Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
(106 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The number of photons per MeV per incident electron per <math>g/cm^2</math> of radiator (Z,A) is given by [ | + | The number of photons per MeV per incident electron per <math>g/cm^2</math> of radiator (Z,A) is given by [*]: |
<math>\frac{d^2n}{d\kappa dt} = \frac{3.495 \times 10^{-4}}{A\kappa}[Z^2\Phi_n(Z,E_0,k)+Z\Phi_e(Z,E_0,k)](MeV^{-1}g^{-1}cm^2)</math>, | <math>\frac{d^2n}{d\kappa dt} = \frac{3.495 \times 10^{-4}}{A\kappa}[Z^2\Phi_n(Z,E_0,k)+Z\Phi_e(Z,E_0,k)](MeV^{-1}g^{-1}cm^2)</math>, | ||
− | where <math>\kappa</math> - photon kinetic energy in MeV | + | where <math>\kappa</math> - photon kinetic energy in MeV; |
− | <math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}]\}</math> | + | <math>E_0</math> - incident electron total energy (in units of the electron rest mass); |
+ | |||
+ | <math>k</math> - incident photon energy (in units of the electron rest mass); | ||
+ | |||
+ | |||
+ | ''Calculation of <math>\Phi_e(Z,E_0,k)</math>'' | ||
+ | |||
+ | <math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}(\frac{1}{2}L-[\frac{\rho(\rho+2)(E_0+1)}{E_0-1}]^{\frac{1}{2}})^2]\}</math>; | ||
+ | |||
+ | <math>E = E_0 - k</math>; | ||
+ | |||
+ | <math>\rho = E_0 -k(1+E_0-\sqrt{E^2 - 1})</math>; | ||
+ | |||
+ | <math>\eta = \rho/(\rho+2)</math>; | ||
+ | |||
+ | <math>L = 2 ln(\frac{(E_0-1)^{\frac{1}{2}}+[\eta(E_0+1)^{\frac{1}{2}}]}{(E_0-1)^{\frac{1}{2}}-[\eta(E_0+1)^{\frac{1}{2}}]})</math>; | ||
+ | |||
+ | <math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math>; | ||
+ | |||
+ | <math>\varepsilon = 100k/E_0EZ^{2/3}</math>; | ||
+ | |||
+ | '''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible, <math>\psi(\varepsilon)=19.19-4ln\varepsilon</math> (free electron form) and in this case <math>C_B = 1</math>. | ||
+ | |||
+ | '''Case B:''' For <math>\varepsilon < 0.88</math> we have <math>\psi(\varepsilon) = 19.70 + 4.117(0.88-\varepsilon)-3.806(0.88-\varepsilon)^2 + 31.84(0.88-\varepsilon)^3-58.63(0.88-\varepsilon)^4+40.77(0.88-\varepsilon)^5</math> | ||
+ | |||
+ | |||
+ | ''Calculation of <math>\Phi_n(Z,E_0,k)</math>'' | ||
+ | |||
+ | '''1.a''' <math>\gamma(=100k/E_0EZ^{1/3}) \leq 15</math> , <math>k<k_x</math>: | ||
+ | |||
+ | <math>\Phi_n(Z,E_0,k) = 4([1+ (\frac{E}{E_0})^2][\frac{1}{4}\phi_1(\gamma)-\frac{1}{3}lnZ - f(Z)]-\frac{2E}{3E_0}[\frac{1}{4}\phi_2(\gamma)-\frac{1}{3}lnZ-f(Z)]) </math> | ||
+ | |||
+ | <math>\phi_1(\gamma),\phi_2(\gamma) </math> - screening functions; | ||
+ | |||
+ | <math>\phi_1(\gamma) = 19.24 - 4ln(\gamma + \frac{2}{\gamma+3})-0.12\gamma e^{-\frac{1}{3}\gamma}</math> | ||
+ | |||
+ | <math>\phi_2(\gamma)=\phi_1(\gamma)-0.027-(0.8-\gamma)^2</math>, for <math>\gamma\leq0.80</math>; | ||
+ | |||
+ | <math>\phi_2(\gamma)=\phi_1(\gamma)</math>, for <math>\gamma > 0.80</math>; | ||
+ | |||
+ | |||
+ | |||
+ | '''1.b''' <math>\gamma > 15</math>, <math>k<k_x</math>: | ||
+ | |||
+ | <math>\Phi_n(Z,E_0,k) = \frac{p}{p_0}(\frac{4}{3}-2EE_0(\frac{p^2+p^2_0}{p^2p^2_0})+\frac{\omega_0E}{p^3_0}+\frac{\omega E_0}{p^3}-\frac{\omega\omega_0}{pp_0}+l[\frac{k}{2pp_0}(\omega_0(\frac{EE_0+p^2_0}{p^3_0})-\omega(\frac{EE_0+p^2}{p^3})+\frac{2kEE_0}{p^2p^2_0})+\frac{8EE_0}{3pp_0}+\frac{k^2(E^2E^2_0+p^2p^2_0)}{p^3p^3_0}])</math> | ||
+ | |||
+ | <math>p_0 = \sqrt{E^2_0-1}</math> | ||
+ | |||
+ | <math>p = \sqrt{E^2-1}</math> | ||
+ | |||
+ | <math>\omega_0 = ln(\frac{E_0+p_0}{E_0-p_0})</math> | ||
+ | |||
+ | <math>l=2ln(\frac{EE_0+pp_0-1}{k})</math> | ||
+ | |||
+ | '''2.''' <math>k_x \leq k \leq T_0</math> | ||
+ | |||
+ | <math>\Phi_n(Z,E_0,k) = \frac{\Phi_{n(1.a or 1.b)}(k_x)-\Phi_{tip}(T_0)}{k_x - T_0}(k-k_x)+\Phi_{n(1.a or 1.b)}(k_x)</math> | ||
+ | |||
+ | <math>\Phi_{tip} = 4\pi ae^{-\pi a}F(\zeta)P(\beta)[1-0.838aR(\beta)+0.650a^2]</math> | ||
+ | |||
+ | <math>F(\zeta)=[2\frac{\Gamma(\zeta)}{\Gamma(2\zeta+1)}(2a)^{\zeta-1}]^2</math>, <math>\zeta = \sqrt{1-(\frac{Z}{137})^2}</math> | ||
+ | |||
+ | <math>P(\beta)\rightarrow 1</math>, <math>R(\beta)\rightarrow 1</math> when <math>\beta = \frac{p_0}{E_0}\rightarrow 1</math> | ||
+ | |||
+ | <math>P(\beta) = \frac{\beta^3\delta^3}{T^4_0}exp[-2a(\frac{1}{\beta}-1)cos^{-1}a]\times M(\beta)</math> | ||
+ | |||
+ | <math>R(\beta)=\frac{K(\beta)}{M(\beta)}</math> | ||
+ | |||
+ | <math>M(\beta) = \frac{4}{3}+\frac{(\delta-2)(\delta-1)}{\beta^2 \delta}[1+\frac{1}{2\beta^2 \delta}ln(\frac{1-\beta}{1+\beta})]</math> | ||
+ | |||
+ | <math>K(\beta)=\frac{1}{\beta^3}[\delta - \frac{17}{2}+\frac{63}{4\delta}-\frac{25}{4\delta^2}-\frac{2}{\delta^3}-\frac{15}{8\beta \delta^3}(\delta-2)(\delta-1)ln(\frac{1-\beta}{1+\beta})]</math> | ||
+ | |||
+ | |||
+ | <math>\delta = (1-\beta^2)^{-\frac{1}{2}}</math> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | |||
+ | Reference: [*] J.L. Matthews, R.O. Owens, ''Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra'', NIM III (1973) I57-I68. |
Latest revision as of 16:14, 10 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
Calculation of
;
;
;
;
;
;
;
Case A: For
the screening effect is negligible, (free electron form) and in this case .Case B: For
we have
Calculation of
1.a
, :
- screening functions;
, for ;
, for ;
1.b
, :
2.
,
, when
Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.