Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
| Line 67: | Line 67: | ||
<math>F(\zeta)=[2\frac{\Gamma(\zeta)}{\Gamma(2\zeta+1)}(2a)^{\zeta-1}]^2</math>, <math>\zeta = \sqrt{1-(\frac{Z}{137})^2}</math> | <math>F(\zeta)=[2\frac{\Gamma(\zeta)}{\Gamma(2\zeta+1)}(2a)^{\zeta-1}]^2</math>, <math>\zeta = \sqrt{1-(\frac{Z}{137})^2}</math> | ||
| − | <math>P(\beta)\rightarrow 1</math>, <math>R(\beta)\rightarrow 1</math> | + | <math>P(\beta)\rightarrow 1</math>, <math>R(\beta)\rightarrow 1</math> when <math>\beta = \frac{p_0}{E_0}\rightarrow 1</math> |
---- | ---- | ||
Revision as of 22:55, 9 May 2008
The number of photons per MeV per incident electron per of radiator (Z,A) is given by [*]:
,
where - photon kinetic energy in MeV;
- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
Calculation of
;
;
;
;
;
;
;
Case A: For the screening effect is negligible, (free electron form) and in this case .
Case B: For we have
Calculation of
1.a , :
- screening functions;
, for ;
, for ;
1.b , :
2.
,
, when
Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.