Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
| Line 62: | Line 62: | ||
<math>\Phi_n(Z,E_0,k) = \frac{\Phi_{n(1.a or 1.b)}(k_x)-\Phi_{tip}(T_0)}{k_x - T_0}(k-k_x)+\Phi_{n(1.a or 1.b)}(k_x)</math> | <math>\Phi_n(Z,E_0,k) = \frac{\Phi_{n(1.a or 1.b)}(k_x)-\Phi_{tip}(T_0)}{k_x - T_0}(k-k_x)+\Phi_{n(1.a or 1.b)}(k_x)</math> | ||
| + | |||
| + | <math>\Phi_{tip} = 4\pi ae^{-\pi a}F(\zeta)P(\beta)</math> | ||
---- | ---- | ||
Revision as of 22:26, 9 May 2008
The number of photons per MeV per incident electron per of radiator (Z,A) is given by [*]:
,
where - photon kinetic energy in MeV;
- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
Calculation of
;
;
;
;
;
;
;
Case A: For the screening effect is negligible, (free electron form) and in this case .
Case B: For we have
Calculation of
1.a , :
- screening functions;
, for ;
, for ;
1.b , :
2.
Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.