Difference between revisions of "Calculation of radiation yield"

From New IAC Wiki
Jump to navigation Jump to search
Line 39: Line 39:
 
<math>\gamma > 15</math>, <math>k<k_x</math>:
 
<math>\gamma > 15</math>, <math>k<k_x</math>:
  
<math>\Phi_n(Z,E_0,k) = \frac{p}{p_0}(\frac{4}{3}-2EE_0(\frac{p^2+p^2_0}{p^2p^2_0})+\frac{\omega_0E}{p^3_0})</math>
+
<math>\Phi_n(Z,E_0,k) = \frac{p}{p_0}(\frac{4}{3}-2EE_0(\frac{p^2+p^2_0}{p^2p^2_0})+\frac{\omega_0E}{p^3_0}+\frac{\omega E_0}{p^3})</math>
  
  

Revision as of 21:10, 9 May 2008

The number of photons per MeV per incident electron per g/cm2 of radiator (Z,A) is given by [*]:

d2ndκdt=3.495×104Aκ[Z2Φn(Z,E0,k)+ZΦe(Z,E0,k)](MeV1g1cm2),

where κ - photon kinetic energy in MeV;

E0 - incident electron total energy (in units of the electron rest mass);

k - incident photon energy (in units of the electron rest mass);


Calculation of Φe(Z,E0,k)

Φe(Z,E0,k)=CB{2[12E3E0+(EE)2][Lη]+η[1L22ρ1ρ2(12L[ρ(ρ+2)(E0+1)E01]12)2]};

E=E0k;

ρ=E0k(1+E0E21);

η=ρ/(ρ+2);

L=2ln((E01)12+[η(E0+1)12](E01)12[η(E0+1)12]);

CB=14ψ(ε)1lnZ233.798lnεlnZ23;

ε=100k/E0EZ2/3;

Case A: For ε0.88 the screening effect is negligible, ψ(ε)=19.194lnε (free electron form) and in this case CB=1.

Case B: For ε<0.88 we have ψ(ε)=19.70+4.117(0.88ε)3.806(0.88ε)2+31.84(0.88ε)358.63(0.88ε)4+40.77(0.88ε)5


Calculation of Φn(Z,E0,k)

γ(=100k/E0EZ1/3)15 , k<kx:

Φn(Z,E0,k)=4([1+(EE0)2][14ϕ1(γ)13lnZf(Z)]2E3E0[14ϕ2(γ)13lnZf(Z)])

γ>15, k<kx:

Φn(Z,E0,k)=pp0(432EE0(p2+p20p2p20)+ω0Ep30+ωE0p3)




Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.