Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
Line 25: | Line 25: | ||
'''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible, <math>\psi(\varepsilon)=19.19-4ln\varepsilon</math> (free electron form) and in this case <math>C_B = 1</math>. | '''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible, <math>\psi(\varepsilon)=19.19-4ln\varepsilon</math> (free electron form) and in this case <math>C_B = 1</math>. | ||
− | '''Case B:''' For <math>\varepsilon < 0.88</math> we have <math>\psi(\varepsilon) = 19.70 + 4.117(0.88-\varepsilon)-3.806(0.88-\varepsilon)^2 + </math> | + | '''Case B:''' For <math>\varepsilon < 0.88</math> we have <math>\psi(\varepsilon) = 19.70 + 4.117(0.88-\varepsilon)-3.806(0.88-\varepsilon)^2 + 31.84(0.88-\varepsilon)^3-58.63(0.88-\varepsilon)^4+40.77(0.88-\varepsilon)^5</math> |
Revision as of 20:36, 8 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
;
;
;
;
;
;
;
Case A: For
the screening effect is negligible, (free electron form) and in this case .Case B: For
we have