Difference between revisions of "Calculation of radiation yield"

From New IAC Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
<math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math>;  
 
<math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math>;  
  
'''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible and hence <math>C_B = 1</math>.
+
'''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible, <math>\psi(\varepsilon)=19.19-4ln\varepsilon</math> and hence <math>C_B = 1</math>.

Revision as of 20:21, 8 May 2008

The number of photons per MeV per incident electron per g/cm2 of radiator (Z,A) is given by [*]:

d2ndκdt=3.495×104Aκ[Z2Φn(Z,E0,k)+ZΦe(Z,E0,k)](MeV1g1cm2),

where κ - photon kinetic energy in MeV;

E0 - incident electron total energy (in units of the electron rest mass);

k - incident photon energy (in units of the electron rest mass);

Φe(Z,E0,k)=CB{2[12E3E0+(EE)2][Lη]+η[1L22ρ1ρ2(12L[ρ(ρ+2)(E0+1)E01]12)2]};

E=E0k;

ρ=E0k(1+E0E21);

η=ρ/(ρ+2);

L=2ln((E01)12+[η(E0+1)12](E01)12[η(E0+1)12]);

CB=14ψ(ε)1lnZ233.798lnεlnZ23;

Case A: For ε0.88 the screening effect is negligible, ψ(ε)=19.194lnε and hence CB=1.