Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
Line 19: | Line 19: | ||
<math>L = 2 ln(\frac{(E_0-1)^{\frac{1}{2}}+[\eta(E_0+1)^{\frac{1}{2}}]}{(E_0-1)^{\frac{1}{2}}-[\eta(E_0+1)^{\frac{1}{2}}]})</math>; | <math>L = 2 ln(\frac{(E_0-1)^{\frac{1}{2}}+[\eta(E_0+1)^{\frac{1}{2}}]}{(E_0-1)^{\frac{1}{2}}-[\eta(E_0+1)^{\frac{1}{2}}]})</math>; | ||
− | <math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math> | + | <math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math>; |
+ | |||
+ | Case A: For <math>\varepsilon \geq 0.88</math> the screening effect is negligible and hence <math>C_B = 1</math>. |
Revision as of 20:20, 8 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
;
;
;
;
;
;
Case A: For
the screening effect is negligible and hence .