Difference between revisions of "Theory"
Line 46: | Line 46: | ||
− | An asymmetry <math>\triangle R_{np} ^{\pi^+ + \pi^-} = \frac {\triangle\sigma_p^{\pi^+ + \pi^-} - \triangle\sigma_n^{\pi^+ + \pi^-}} {\sigma_p^{\pi^+ + \pi^-} - \sigma_n^{\pi^+ + \pi^-}} = \frac {g_1^p - g_1^n} {F_1^p - F_1^n} (x, Q^2)</math><br> | + | An asymmetry <math>\triangle R_{np} ^{\pi^+ + \pi^-} = \frac {\triangle\sigma_p^{\pi^+ + \pi^-} - \triangle\sigma_n^{\pi^+ + \pi^-}} {\sigma_p^{\pi^+ + \pi^-} - \sigma_n^{\pi^+ + \pi^-}} = \frac {g_1^p - g_1^n} {F_1^p - F_1^n} (x, Q^2)</math> (8)<br> |
The last equation can be expressed as<br> | The last equation can be expressed as<br> | ||
<math>\triangle R_{np} ^{\pi^+ + \pi^-} = R_{n/p}[\frac {A_p^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } + \frac {A_p^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ] | <math>\triangle R_{np} ^{\pi^+ + \pi^-} = R_{n/p}[\frac {A_p^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } + \frac {A_p^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ] | ||
− | + R_{p/n}[\frac {A_n^{\pi^+}} {1 + \frac {1} {R_n^{{\pi^+}/{\pi^-}}} } + \frac {A_n^{\pi^-}} {1 + R_n^{{\pi^+}/{\pi^-}} } ]</math><br> | + | + R_{p/n}[\frac {A_n^{\pi^+}} {1 + \frac {1} {R_n^{{\pi^+}/{\pi^-}}} } + \frac {A_n^{\pi^-}} {1 + R_n^{{\pi^+}/{\pi^-}} } ]</math> (9)<br> |
− | |||
+ | using the nomel | ||
<math>R_{i/j} = \frac {\frac {1 + (1-y)^2} {2y(2 - y)} } {1 - \frac {R_{i/j}^{\pi^+}} {1 + \frac{1}{R_j^{\pi^+/\pi^-} }} - \frac {R_{i/j}^{\pi^+}} {1 + R_j^{\pi^+/\pi^-} }} </math><br> | <math>R_{i/j} = \frac {\frac {1 + (1-y)^2} {2y(2 - y)} } {1 - \frac {R_{i/j}^{\pi^+}} {1 + \frac{1}{R_j^{\pi^+/\pi^-} }} - \frac {R_{i/j}^{\pi^+}} {1 + R_j^{\pi^+/\pi^-} }} </math><br> | ||
<math>R_{i/j}^{\pi^c} = \frac {\sigma_i ^{\pi^c}} {\sigma_j ^{\pi^c}} </math> | <math>R_{i/j}^{\pi^c} = \frac {\sigma_i ^{\pi^c}} {\sigma_j ^{\pi^c}} </math> |
Revision as of 20:52, 18 July 2007
Inclusive Scattering
W
Semi-Inclusive Scattering
Quark distribution Functions
describe
and hereUnpolarized
Polarized
Both models, pQCD and a hyperfine perturbed constituent quark model(CQD), show that as the scaling variable
The inclusive double polarization asymmetries
in the valence region, where the scaling variable can be written in terms of polarized and unpolarized valence quark distributions,
(1)
(2)
The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions
= (3)
= (4)
where
= (5)
where is the measured difference of the yield from oppositely charged pions. Using the first four equation (1), (2), (3) and (4) one can construct the valence quark distribution functions.
The semi - inclusive asymmetry can be rewritten in terms of the measured semi-inclusive and asymmetries:
- (6)
where
An asymmetry
The last equation can be expressed as
(9)
using the nomel