Difference between revisions of "Forest UCM PnCP ProjMotion"
(40 intermediate revisions by the same user not shown) | |||
Line 15: | Line 15: | ||
: <math>x= \frac{m}{b} v_{ix} \left ( 1-e^{-\frac{b}{m}t} \right )</math> | : <math>x= \frac{m}{b} v_{ix} \left ( 1-e^{-\frac{b}{m}t} \right )</math> | ||
− | where <math>v_{ix}</math> has | + | where <math>v_{ix}</math> has replaced <math>v_i</math> so the components are more explicitly identifiable. |
in the y-direction however, the directions are changed to represent an object moving upwards instead of falling | in the y-direction however, the directions are changed to represent an object moving upwards instead of falling | ||
Line 37: | Line 37: | ||
:<math>y = -v_t t + \frac{m}{b}\left ( v_{iy} + v_t \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) </math> | :<math>y = -v_t t + \frac{m}{b}\left ( v_{iy} + v_t \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) </math> | ||
− | where <math>v_{iy}</math> has | + | where <math>v_{iy}</math> has replaced <math>v_0</math> so the components are more explicitly identifiable. |
Line 99: | Line 99: | ||
Taylor expanding about x = 0 for | Taylor expanding about x = 0 for | ||
− | :<math>\frac{1}{1+x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math> | + | :<math>\frac{1}{1+x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}</math> |
+ | ::<math>=1 - \left . (1+x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math> | ||
+ | ::<math> = 1 -x + 2\frac{(x)^2}{2!} - 2*3 \frac{(x)^3}{3!} + \cdots </math> | ||
+ | ::<math> = 1 -x + x^2 - x^3 + \cdots = \sum_{n=0}^{\infty} (-x)^{n-1}</math> | ||
+ | :<math>\ln(1+x) = \int \frac{1}{1+x} dx = \int \left ( 1 -x + x^2 - x^3 + \cdots \right ) dx</math> | ||
+ | ::<math>= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots </math> | ||
+ | |||
+ | |||
+ | similarly | ||
+ | |||
+ | |||
+ | :<math>\int \frac{1}{1-x} dx = -\int \frac{1}{u} du \;\;\;\; u = 1-x \;\;\;\; du = -dx</math> | ||
+ | :<math>\int \frac{1}{1-x} dx = -\ln(u) = -\ln(1-x)</math> | ||
+ | |||
+ | Taylor expanding about x=0 | ||
+ | |||
+ | :<math>\frac{1}{1-x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} | ||
+ | \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}</math> | ||
+ | ::<math>=1 + \left . (1-x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math> | ||
+ | ::<math> = 1 + x + 2\frac{(x)^2}{2!} + 2*3 \frac{(x)^3}{3!} + \cdots </math> | ||
+ | ::<math> = 1 +x + x^2 +x^3 + \cdots = \sum_{n=0}^{\infty} (x)^{n-1}</math> | ||
+ | |||
+ | :<math>\int \frac{1}{1-x} dx = -\ln(1-x) = \int \left ( 1 +x + x^2 +x^3 + \cdots \right ) dx</math> | ||
+ | |||
+ | |||
+ | :<math>-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots </math> | ||
+ | |||
+ | |||
+ | :<math>\ln(1-x) = - \left ( x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots \right ) </math> | ||
+ | |||
+ | ===Taylor expand ln term in Range equation=== | ||
+ | |||
+ | :<math>\ln \left ( 1- \frac{R }{v_{ix} \tau}\right) = - \left ( \frac{R }{v_{ix} \tau} + \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^2}{2}+ \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^3}{3} + \cdots \right )</math> | ||
+ | |||
+ | |||
+ | :<math> \frac{ v_{iy} + v_t }{v_{ix}} R = v_t \tau \left ( \frac{R }{v_{ix} \tau} + \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^2}{2}+ \frac{\left ( \frac{R }{v_{ix} \tau} \right ) ^3}{3} + \cdots \right )</math> | ||
+ | |||
+ | |||
+ | ;<math>R=0</math> is a solution <math>\Rightarrow</math> height is zero when <math>R = 0</math> | ||
+ | |||
+ | |||
+ | :<math> \frac{ v_{iy} + v_t }{v_{ix}} = v_t \tau \left ( \frac{1 }{v_{ix} \tau} + \frac{R }{2v_{ix}^2 \tau^2}+ \frac{R^2 }{3 v_{ix}^3 \tau^3} + \cdots \right )</math> | ||
+ | :<math> v_{iy} + v_t = v_t \left ( 1 + \frac{R }{2v_{ix} \tau}+ \frac{R^2 }{3 v_{ix}^2 \tau^2} + \cdots \right )</math> | ||
+ | :<math> v_{iy} = v_t\left ( \frac{R }{2v_{ix} \tau}+ \frac{R^2 }{3 v_{ix}^2 \tau^2} + \cdots \right )</math> | ||
+ | |||
+ | :<math> \frac{R }{2v_{ix} \tau} \sim \frac{v_{iy}}{v_t} - \frac{R^2 }{3 v_{ix}^2 \tau^2} </math> | ||
+ | :<math> R \sim \frac{2v_{iy}v_{ix} \tau}{v_t} - \frac{2 R^2 v_{ix} \tau}{3 v_{ix}^2 \tau^2} </math> | ||
+ | ::<math> \sim \frac{2v_{iy}v_{ix}}{g} - \frac{2 }{3 v_{ix} \tau} R^2 </math> | ||
+ | ::<math> \sim R_{vacuum} - \frac{2 }{3 v_{ix} \tau} R^2 </math> | ||
[[Forest_UCM_PnCP#Projecile_Motion]] | [[Forest_UCM_PnCP#Projecile_Motion]] |
Latest revision as of 14:27, 7 September 2021
Projectile Motion
Friction depends linearly on velocity
Projectile motion describes the path a mass moving in two dimensions. An example of which is the motion of a projectile shot out of a cannon with an initial velocity
with an angle of inclination .When the motion in each dimension is independent, the kinematics are separable giving you two equations of motion that depend on the same time.
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity (Forest_UCM_PnCP_LinAirRes) we can write :
where
has replaced so the components are more explicitly identifiable.in the y-direction however, the directions are changed to represent an object moving upwards instead of falling
Newton's second law for falling
becomes
for a rising projectile
This changes the signs in front of the
terms such thatbecomes
where
has replaced so the components are more explicitly identifiable.
We now have a system governed by the following system of two equations
let
Range equation
To determine how far the projectile will travel in the x-direction (Range) you can solve the above equation for
in the case that .since time is the same in both equations you can solve for time in terms of x and substitute for time inthe y-direction equations.
solving for
using the x-direction equationsubstituting for
now we need to substitute for time
substituting for time
The Range is defined as the value for when
The above equation does not have an exact analytical solution.
You can try to solve it graphically or by taylor expanding small quantities when they appear as arguments to functions like the
functionSolution by Taylor expansion
If
ln(1-x) Taylor expansion
Taylor expanding about x = 0 for
similarly
Taylor expanding about x=0
Taylor expand ln term in Range equation
- is a solution height is zero when