|
|
(14 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | <center><math>\textbf{\underline{Navigation}}</math> | + | <center><math>\underline{\textbf{Navigation}}</math> |
| | | |
| [[U-Channel|<math>\vartriangleleft </math>]] | | [[U-Channel|<math>\vartriangleleft </math>]] |
| [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
− | [[Limits_based_on_Mandelstam_Variables|<math>\vartriangleright </math>]] | + | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]] |
| | | |
| </center> | | </center> |
Line 105: |
Line 105: |
| | | |
| | | |
− | However, from the definition of u being invariant between frames of reference | + | However, from the definition of s being invariant between frames of reference |
| | | |
− | <center><math>u \equiv \overbrace{\left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_1^{'*}}\right)^2}^{CM\ FRAME}=\overbrace{\left({\mathbf P_1}- {\mathbf P_2^{'}}\right)^2 = \left({\mathbf P_2}- {\mathbf P_1^{'}}\right)^2}^{LAB\ FRAME}</math></center> | + | <center><math>s \equiv \overbrace{\left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2}^{CM\ FRAME}=\overbrace{\left({\mathbf P_1}+ {\mathbf P_2}\right)^2 = \left({\mathbf P_1^{'}}+ {\mathbf P_2^{'}}\right)^2}^{LAB\ FRAME}</math></center> |
| | | |
| | | |
− | When u=0, this implies 4 different scenarios
| + | In the center of mass frame of reference, |
| | | |
− | <center> <math>\mathbf P_1^*= \mathbf P_2^{'*}=\mathbf P_2^*= \mathbf P_1^{'*}=0</math></center> | + | <center><math>E_1^*=E_2^*=E^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*= \vec p \ ^*</math></center> |
| | | |
| | | |
− | This is the simple solution which would imply no collision.
| + | <center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )</math></center> |
| | | |
| | | |
− | <center><math>\mathbf P_1^*= \mathbf P_2^{'*}; \mathbf P_2^*= \mathbf P_1^{'*}=0 </math></center>
| + | Using the relativistic energy equation |
| | | |
| + | <center><math>E^2 \equiv \vec p \ ^2+m^2</math></center> |
| | | |
| | | |
− | <center> <math>\mathbf P_1^*= \mathbf P_2^{'*}=0;\mathbf P_2^*= \mathbf P_1^{'*}</math></center> | + | <center><math>s \equiv 2m^2+2((m^2+\vec p \ ^{*2})+\vec p \ ^{*2})</math></center> |
| | | |
| | | |
− | These two cases show a stationary particle receiving all the momentum of an incident particle. This is not possible for equal mass particles.
| + | <center><math>s=4m^2+4 \vec p \ ^{*2})</math></center> |
| | | |
| | | |
| + | <center><math>\frac{s-4m^2}{4}= \vec p \ ^{*2}</math></center> |
| | | |
− | <center> <math>\mathbf P_1^*= \mathbf P_2^{'*}=\mathbf P_2^*= \mathbf P_1^{'*}</math></center>
| |
| | | |
| | | |
| | | |
| + | <center><math>t=-2 p \ ^{*2}(1-cos\ \theta)=\frac{-2(s-4m^2)}{4}(1-cos\ \theta)</math></center> |
| | | |
| | | |
− | <center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_2^{'*}}\right)^2</math></center> | + | |
| + | <center><math>\frac{-2t}{s-4m^2}=(1-cos\ \theta)</math></center> |
| + | |
| + | |
| + | <center><math>cos\ \theta=1-\frac{-2t}{s-4m^2}</math></center> |
| + | |
| + | |
| + | |
| + | ---- |
| + | |
| + | |
| + | |
| + | <center><math>\underline{\textbf{Navigation}}</math> |
| + | |
| + | [[U-Channel|<math>\vartriangleleft </math>]] |
| + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
| + | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]] |
| + | |
| + | </center> |
[math]\underline{\textbf{Navigation}}[/math]
[math]\vartriangleleft [/math]
[math]\triangle [/math]
[math]\vartriangleright [/math]
Limits based on Mandelstam Variables
Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:
[math]s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]
[math]s+t+u \equiv 4m^2[/math]
Since
[math]s \equiv 4(m^2+\vec p \ ^{*2})[/math]
This implies
[math]s \ge 4m^2[/math]
In turn, this implies
[math] t \le 0 \qquad u \le 0[/math]
At the condition both t and u are equal to zero, we find
[math] t = 0 \qquad u = 0[/math]
[math]-2 p \ ^{*2}(1-cos\ \theta) = 0 \qquad -2 p \ ^{*2}(1+cos\ \theta) = 0[/math]
[math](-2 p \ ^{*2}+2 p \ ^{*2}cos\ \theta) = 0 \qquad (-2 p \ ^{*2}-2 p \ ^{*2}cos\ \theta) = 0[/math]
[math]2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2} \qquad -2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2}[/math]
[math]\cos\ \theta = 1 \qquad \cos\ \theta = -1[/math]
[math]\Rightarrow \theta_{t=0} = \arccos \ 1=0^{\circ} \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}[/math]
Holding u constant at zero we can find the minimum of t
[math]s+t_{max} \equiv 4m^2[/math]
[math]\Rightarrow t_{max}=4m^2-s[/math]
[math]t_{max}=4m^2-4m^2- 4p \ ^{*2}[/math]
The maximum transfer of momentum would be
[math]t_{max}=-4p \ ^{*2}[/math]
[math]-2 p \ ^{*2}(1-cos\ \theta_{t=max})=-4p \ ^{*2}[/math]
[math](1-cos\ \theta_{t=max})=2[/math]
[math]-cos\ \theta_{t=max}=1[/math]
[math] \theta_{t=max} \equiv \arccos -1[/math]
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at [math]\theta=180^{\circ}[/math]
[math]\theta_{t=max}=180^{\circ}[/math]
However, from the definition of s being invariant between frames of reference
[math]s \equiv \overbrace{\left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2}^{CM\ FRAME}=\overbrace{\left({\mathbf P_1}+ {\mathbf P_2}\right)^2 = \left({\mathbf P_1^{'}}+ {\mathbf P_2^{'}}\right)^2}^{LAB\ FRAME}[/math]
In the center of mass frame of reference,
[math]E_1^*=E_2^*=E^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*= \vec p \ ^*[/math]
[math]s \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )[/math]
Using the relativistic energy equation
[math]E^2 \equiv \vec p \ ^2+m^2[/math]
[math]s \equiv 2m^2+2((m^2+\vec p \ ^{*2})+\vec p \ ^{*2})[/math]
[math]s=4m^2+4 \vec p \ ^{*2})[/math]
[math]\frac{s-4m^2}{4}= \vec p \ ^{*2}[/math]
[math]t=-2 p \ ^{*2}(1-cos\ \theta)=\frac{-2(s-4m^2)}{4}(1-cos\ \theta)[/math]
[math]\frac{-2t}{s-4m^2}=(1-cos\ \theta)[/math]
[math]cos\ \theta=1-\frac{-2t}{s-4m^2}[/math]
[math]\underline{\textbf{Navigation}}[/math]
[math]\vartriangleleft [/math]
[math]\triangle [/math]
[math]\vartriangleright [/math]