Difference between revisions of "Limits based on Mandelstam Variables"
| (16 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <center><math>\  | + | <center><math>\underline{\textbf{Navigation}}</math>  | 
[[U-Channel|<math>\vartriangleleft </math>]]  | [[U-Channel|<math>\vartriangleleft </math>]]  | ||
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]  | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]  | ||
| − | [[  | + | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]]  | 
</center>  | </center>  | ||
| Line 105: | Line 105: | ||
| − | However, from the definition of   | + | However, from the definition of s being invariant between frames of reference  | 
| − | <center><math>  | + | <center><math>s \equiv \overbrace{\left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2}^{CM\ FRAME}=\overbrace{\left({\mathbf P_1}+ {\mathbf P_2}\right)^2 = \left({\mathbf P_1^{'}}+ {\mathbf P_2^{'}}\right)^2}^{LAB\ FRAME}</math></center>  | 
| − | + | In the center of mass frame of reference,    | |
| − | <center> <math>  | + | <center><math>E_1^*=E_2^*=E^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*= \vec p \ ^*</math></center>  | 
| − | + | <center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )</math></center>  | |
| − | + | Using the relativistic energy equation  | |
| + | <center><math>E^2 \equiv \vec p \ ^2+m^2</math></center>  | ||
| − | <center> <math>\  | + | <center><math>s \equiv 2m^2+2((m^2+\vec p \ ^{*2})+\vec p \ ^{*2})</math></center>  | 
| − | + | <center><math>s=4m^2+4 \vec p \ ^{*2})</math></center>  | |
| + | <center><math>\frac{s-4m^2}{4}= \vec p \ ^{*2}</math></center>  | ||
| − | |||
| + | <center><math>t=-2 p \ ^{*2}(1-cos\ \theta)=\frac{-2(s-4m^2)}{4}(1-cos\ \theta)</math></center>  | ||
| − | <center><math>  | + | |
| + | <center><math>\frac{-2t}{s-4m^2}=(1-cos\ \theta)</math></center>  | ||
| + | |||
| + | |||
| + | <center><math>cos\ \theta=1-\frac{-2t}{s-4m^2}</math></center>  | ||
| + | |||
| + | |||
| + | |||
| + | ----  | ||
| + | |||
| + | |||
| + | |||
| + | <center><math>\underline{\textbf{Navigation}}</math>  | ||
| + | |||
| + | [[U-Channel|<math>\vartriangleleft </math>]]  | ||
| + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]  | ||
| + | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]]  | ||
| + | |||
| + | </center>  | ||
Latest revision as of 19:07, 1 January 2019
Limits based on Mandelstam Variables
Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:
Since 
This implies
In turn, this implies
At the condition both t and u are equal to zero, we find
Holding u constant at zero we can find the minimum of t
The maximum transfer of momentum would be 
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°).  We find as expected for u=0 at 
However, from the definition of s being invariant between frames of reference
In the center of mass frame of reference, 
Using the relativistic energy equation