Difference between revisions of "Limits based on Mandelstam Variables"

From New IAC Wiki
Jump to navigation Jump to search
 
(44 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[U-Channel|<math>\vartriangleleft </math>]]
 
[[U-Channel|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
[[Limits_based_on_Mandelstam_Variables|<math>\vartriangleright </math>]]
+
[[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 56: Line 56:
  
  
<center><math>cos\ \theta = 1  \qquad cos\ \theta = -1</math></center>
+
<center><math>\cos\ \theta = 1  \qquad \cos\ \theta = -1</math></center>
  
  
<center><math>|Rightarrow  \theta_{t=0} = arccos \ 1=0^{\circ}  \qquad \theta_{u=0} = arccos \ -1=180^{\circ}</math></center>
+
<center><math>\Rightarrow  \theta_{t=0} = \arccos \ 1=0^{\circ}  \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}</math></center>
 +
 
 +
Holding u constant at zero we can find the minimum of t
 +
 
 +
 
 +
<center><math>s+t_{max} \equiv 4m^2</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\Rightarrow t_{max}=4m^2-s</math></center>
 +
 
 +
 
 +
 
 +
<center><math>t_{max}=4m^2-4m^2- 4p \ ^{*2}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
The maximum transfer of momentum would be
 +
 
 +
 
 +
<center><math>t_{max}=-4p \ ^{*2}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>-2 p \ ^{*2}(1-cos\ \theta_{t=max})=-4p \ ^{*2}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>(1-cos\ \theta_{t=max})=2</math></center>
 +
 
 +
 
 +
 
 +
<center><math>-cos\ \theta_{t=max}=1</math></center>
 +
 
 +
 
 +
 
 +
<center><math> \theta_{t=max} \equiv \arccos -1</math></center>
 +
 
 +
 
 +
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°).  We find as expected for u=0 at <math>\theta=180^{\circ}</math>
 +
 
 +
<center><math>\theta_{t=max}=180^{\circ}</math></center>
 +
 
 +
 
 +
However, from the definition of s being invariant between frames of reference
 +
 
 +
<center><math>s \equiv \overbrace{\left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2}^{CM\ FRAME}=\overbrace{\left({\mathbf P_1}+ {\mathbf P_2}\right)^2 = \left({\mathbf P_1^{'}}+ {\mathbf P_2^{'}}\right)^2}^{LAB\ FRAME}</math></center>
 +
 
 +
 
 +
In the center of mass frame of reference,
 +
 
 +
<center><math>E_1^*=E_2^*=E^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*= \vec p \ ^*</math></center>
 +
 
 +
 
 +
<center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )</math></center>
 +
 
 +
 
 +
Using the relativistic energy equation
 +
 
 +
<center><math>E^2 \equiv \vec p \ ^2+m^2</math></center>
 +
 
 +
 
 +
<center><math>s \equiv 2m^2+2((m^2+\vec p \ ^{*2})+\vec p \ ^{*2})</math></center>
 +
 
 +
 
 +
<center><math>s=4m^2+4 \vec p \ ^{*2})</math></center>
 +
 
 +
 
 +
<center><math>\frac{s-4m^2}{4}= \vec p \ ^{*2}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>t=-2 p \ ^{*2}(1-cos\ \theta)=\frac{-2(s-4m^2)}{4}(1-cos\ \theta)</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\frac{-2t}{s-4m^2}=(1-cos\ \theta)</math></center>
 +
 
 +
 
 +
<center><math>cos\ \theta=1-\frac{-2t}{s-4m^2}</math></center>
 +
 
 +
 
 +
 
 +
----
 +
 
 +
 
 +
 
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[U-Channel|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]]
 +
 
 +
</center>

Latest revision as of 19:07, 1 January 2019

Navigation_


Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:


s+t+u=(4(m2+p 2))+(2p 2(1cos θ))+(2p 2(1+cos θ))


s+t+u4m2


Since

s4(m2+p 2)


This implies

s4m2


In turn, this implies


t0u0


At the condition both t and u are equal to zero, we find


t=0u=0


2p 2(1cos θ)=02p 2(1+cos θ)=0


(2p 2+2p 2cos θ)=0(2p 22p 2cos θ)=0


2p 2cos θ=2p 22p 2cos θ=2p 2


cos θ=1cos θ=1


θt=0=arccos 1=0θu=0=arccos 1=180

Holding u constant at zero we can find the minimum of t


s+tmax4m2


tmax=4m2s


tmax=4m24m24p 2



The maximum transfer of momentum would be


tmax=4p 2



2p 2(1cos θt=max)=4p 2


(1cos θt=max)=2


cos θt=max=1


θt=maxarccos1


The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at θ=180

θt=max=180


However, from the definition of s being invariant between frames of reference

sCM FRAME(P1+P2)2=(P1+P2)2=LAB FRAME(P1+P2)2=(P1+P2)2


In the center of mass frame of reference,

E1=E2=Eandp 1=p 2=p 


s2m2+2(E21+p 2)


Using the relativistic energy equation

E2p 2+m2


s2m2+2((m2+p 2)+p 2)


s=4m2+4p 2)


s4m24=p 2



t=2p 2(1cos θ)=2(s4m2)4(1cos θ)


2ts4m2=(1cos θ)


cos θ=12ts4m2




Navigation_