Difference between revisions of "Limits based on Mandelstam Variables"
(71 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[U-Channel|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | |||
=Limits based on Mandelstam Variables= | =Limits based on Mandelstam Variables= | ||
− | <center><math>\ | + | |
+ | Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives: | ||
+ | |||
+ | |||
+ | <center><math>s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s+t+u \equiv 4m^2</math></center> | ||
+ | |||
+ | |||
+ | Since | ||
+ | |||
+ | <center><math>s \equiv 4(m^2+\vec p \ ^{*2})</math></center> | ||
+ | |||
+ | |||
+ | This implies | ||
+ | |||
+ | <center><math>s \ge 4m^2</math></center> | ||
+ | |||
+ | |||
+ | In turn, this implies | ||
+ | |||
+ | |||
+ | <center><math> t \le 0 \qquad u \le 0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | At the condition both t and u are equal to zero, we find | ||
+ | |||
+ | |||
+ | <center><math> t = 0 \qquad u = 0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>-2 p \ ^{*2}(1-cos\ \theta) = 0 \qquad -2 p \ ^{*2}(1+cos\ \theta) = 0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>(-2 p \ ^{*2}+2 p \ ^{*2}cos\ \theta) = 0 \qquad (-2 p \ ^{*2}-2 p \ ^{*2}cos\ \theta) = 0</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2} \qquad -2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\cos\ \theta = 1 \qquad \cos\ \theta = -1</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\Rightarrow \theta_{t=0} = \arccos \ 1=0^{\circ} \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}</math></center> | ||
+ | |||
+ | Holding u constant at zero we can find the minimum of t | ||
+ | |||
+ | |||
+ | <center><math>s+t_{max} \equiv 4m^2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\Rightarrow t_{max}=4m^2-s</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>t_{max}=4m^2-4m^2- 4p \ ^{*2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | The maximum transfer of momentum would be | ||
+ | |||
+ | |||
+ | <center><math>t_{max}=-4p \ ^{*2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <center><math>-2 p \ ^{*2}(1-cos\ \theta_{t=max})=-4p \ ^{*2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>(1-cos\ \theta_{t=max})=2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>-cos\ \theta_{t=max}=1</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math> \theta_{t=max} \equiv \arccos -1</math></center> | ||
+ | |||
+ | |||
+ | The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at <math>\theta=180^{\circ}</math> | ||
+ | |||
+ | <center><math>\theta_{t=max}=180^{\circ}</math></center> | ||
+ | |||
+ | |||
+ | However, from the definition of s being invariant between frames of reference | ||
+ | |||
+ | <center><math>s \equiv \overbrace{\left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2}^{CM\ FRAME}=\overbrace{\left({\mathbf P_1}+ {\mathbf P_2}\right)^2 = \left({\mathbf P_1^{'}}+ {\mathbf P_2^{'}}\right)^2}^{LAB\ FRAME}</math></center> | ||
+ | |||
+ | |||
+ | In the center of mass frame of reference, | ||
+ | |||
+ | <center><math>E_1^*=E_2^*=E^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*= \vec p \ ^*</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )</math></center> | ||
+ | |||
+ | |||
+ | Using the relativistic energy equation | ||
+ | |||
+ | <center><math>E^2 \equiv \vec p \ ^2+m^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s \equiv 2m^2+2((m^2+\vec p \ ^{*2})+\vec p \ ^{*2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s=4m^2+4 \vec p \ ^{*2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\frac{s-4m^2}{4}= \vec p \ ^{*2}</math></center> | ||
− | |||
− | <center><math> | + | <center><math>t=-2 p \ ^{*2}(1-cos\ \theta)=\frac{-2(s-4m^2)}{4}(1-cos\ \theta)</math></center> |
− | <center><math> \ | + | <center><math>\frac{-2t}{s-4m^2}=(1-cos\ \theta)</math></center> |
− | <center><math> \ | + | <center><math>cos\ \theta=1-\frac{-2t}{s-4m^2}</math></center> |
− | |||
+ | ---- | ||
− | |||
− | <center><math> | + | <center><math>\underline{\textbf{Navigation}}</math> |
− | + | [[U-Channel|<math>\vartriangleleft </math>]] | |
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[Limit_of_Energy_in_Lab_Frame|<math>\vartriangleright </math>]] | ||
− | + | </center> |
Latest revision as of 19:07, 1 January 2019
Limits based on Mandelstam Variables
Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:
Since
This implies
In turn, this implies
At the condition both t and u are equal to zero, we find
Holding u constant at zero we can find the minimum of t
The maximum transfer of momentum would be
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at
However, from the definition of s being invariant between frames of reference
In the center of mass frame of reference,
Using the relativistic energy equation