Difference between revisions of "Frame of Reference Transformation"
Jump to navigation
Jump to search
Where
Where
is the Lorentz transformation matrix for motion in the z direction.
Where
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[4-momenta|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[4-gradient|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | =Frame of Reference Transformation= | ||
Using the Lorentz transformations and the index notation, | Using the Lorentz transformations and the index notation, | ||
Line 76: | Line 85: | ||
− | <center><math>dt^' \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz \Rightarrow dx^{'0} \equiv \frac{\partial x^{'0}}{\partial x^0} dx^0+\frac{\partial x^{'0}}{\partial x^1} dx^1 + \frac{\partial x^{'0}}{\partial x^2} dx^2+ \frac{\partial x^{'0}}{\partial x^3} dx^3</math></center> | + | <center><math>dt^{'} \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz \Rightarrow dx^{'0} \equiv \frac{\partial x^{'0}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'0}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'0}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'0}}{\partial x^{3}} dx^{3}</math></center> |
− | <center><math>dx^' \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz\Rightarrow dx^{'1} \equiv \frac{\partial x^{'1}}{\partial x^0} dx^0+\frac{\partial x^{'1}}{\partial x^1} dx^1 + \frac{\partial x^{'1}}{\partial x^2} dx^2+ \frac{\partial x^{'1}}{\partial x^3} dx^3</math></center> | + | <center><math>dx^{'} \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz\Rightarrow dx^{'1} \equiv \frac{\partial x^{'1}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'1}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'1}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'1}}{\partial x^{3}} dx^{3}</math></center> |
− | <center><math>dy^' \equiv \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz\Rightarrow dx^{'2} \equiv \frac{\partial x^{'2}}{\partial x^0} dx^0+\frac{\partial x^{'2}}{\partial x^1} dx^1 + \frac{\partial x^{'2}}{\partial x^2} dx^2+ \frac{\partial x^{'2}}{\partial x^3} dx^3</math></center> | + | <center><math>dy^{'} \equiv \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz\Rightarrow dx^{'2} \equiv \frac{\partial x^{'2}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'2}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'2}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'2}}{\partial x^{3}} dx^{3}</math></center> |
− | <center><math>dz^' \equiv \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz\Rightarrow dx^{'3} \equiv \frac{\partial x^{'3}}{\partial x^0} dx^0+\frac{\partial x^{'3}}{\partial x^1} dx^1 + \frac{\partial x^{'3}}{\partial x^2} dx^2+ \frac{\partial x^{'3}}{\partial x^3} dx^3</math></center> | + | <center><math>dz^{'} \equiv \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz\Rightarrow dx^{'3} \equiv \frac{\partial x^{'3}}{\partial x^{0}} dx^{0}+\frac{\partial x^{'3}}{\partial x^{1}} dx^{1} + \frac{\partial x^{'3}}{\partial x^{2}} dx^{2}+ \frac{\partial x^{'3}}{\partial x^{3}} dx^{3}</math></center> |
Line 123: | Line 132: | ||
Again, using a summation over the indicies | Again, using a summation over the indicies | ||
− | <center><math>d\mathbf x^{'\mu}=\sum_{\ | + | <center><math>d\mathbf x^{'\mu}=\sum_{\nu=0}^3 \frac{\partial x^{'\mu}}{\partial x^{\nu}}d\mathbf x^{\nu}</math></center> |
Line 231: | Line 240: | ||
0 & 0 & 0 & -1 | 0 & 0 & 0 & -1 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\underline{\textbf{Navigation}}</math> | ||
+ | |||
+ | [[4-momenta|<math>\vartriangleleft </math>]] | ||
+ | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] | ||
+ | [[4-gradient|<math>\vartriangleright </math>]] | ||
+ | |||
+ | </center> |
Latest revision as of 19:04, 1 January 2019
Frame of Reference Transformation
Using the Lorentz transformations and the index notation,
This can be expressed in matrix form as
Letting the indices run from 0 to 3, we can write
Using the Einstein convention, this can be written as
If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation,
Expressing this in matrix form
Again, using a summation over the indicies
Using the Einstein convention
The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det . The inner product is preserved,