Difference between revisions of "TF InclusiveDeltaDoverD"

From New IAC Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 37: Line 37:
  
  
<math> A_1(x,Q^2) \equiv \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T - \sigma_{3/2}^T} = \frac{g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2)}{F_1(x,Q^2)}</math>
+
<math> A_1(x,Q^2) \equiv \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T - \sigma_{3/2}^T} = \frac{g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2)}{F_1(x,Q^2)} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}</math>
 +
 
 +
 
 +
In the non-relativistic constituent quark model
 +
 
 +
<math> A_1^p = \frac{4\Delta u + \Delta d}{4u+d} \;\;\;\;\ A_1^n = \frac{\Delta u + 4\Delta d}{u+4d}</math> <ref>https://arxiv.org/abs/hep-ph/9809255 PHYSICAL REVIEW D, VOLUME 59, 034013 Valence quark spin distribution functions Nathan Isgur  , https://arxiv.org/abs/hep-ph/0411005 The Spin Structure of the Proton Steven D. Bass Rev.Mod.Phys.77:1257-1302,2005</ref>
 +
 
 +
One can use the two equations above and solve for the polarized quark distributions assuming the unpolarized are known and get , for example
 +
 
 +
<math> \frac{\Delta d}{d} = \frac{4}{15} \left ( 4 + \frac{u}{d}\right ) A_1^n + \frac{1}{15} \left ( 1 + 4\frac{u}{d}\right ) A_1^p</math>
 +
 
 +
Then using the above approximation for A_1
 +
 
 +
<math> \frac{\Delta d}{d} = \frac{4}{15} \left ( 4 + \frac{u}{d}\right ) \frac{g_1^n}{F_1^n} + \frac{1}{15} \left ( 1 + 4\frac{u}{d}\right ) \frac{g_1^p}{F_1^p}</math>
  
  

Latest revision as of 19:03, 22 September 2018

Delta_D_over_D

qi(x)qi(x)+qi(x)

Δqi(x)qi(x)qi(x)



F1(x)12qe2iqi(x)


using the above definition to define the proton and neutron unpolarized structure function :

Fp1(x)12qe2iqpi(x)=12[(23)2up(x)+(13)2dp(x)]=12[49up(x)+19dp(x)]

Fn1(x)12qe2iqpi(x)=12[(23)2un(x)+(13)2dn(x)]=12[49un(x)+19dn(x)]


The above is true within the framework of the constituent quark model when in the valence quark region (xbj>0.5) where the more massive quarks are ignored as well as anti-quarks

Using Isospin symmetry

u(x)up(x)dn(x) and d(x)dp(x)un(x)

The unpolarized structure functions for the proton and neutron may be written as

Fp1(x)=12[49u(x)+19d(x)] Fn1(x)=12[49d(x)+19u(x)]

similarly for the polarized structure function

g1(x)12qe2iΔqi(x)


gp1(x)=12[49Δu(x)+19Δd(x)] gn1(x)=12[49Δd(x)+19Δu(x)]


A1(x,Q2)σT1/2σT3/2σT1/2σT3/2=g1(x,Q2)Q2ν2g2(x,Q2)F1(x,Q2)g1(x,Q2)F1(x,Q2)


In the non-relativistic constituent quark model

Ap1=4Δu+Δd4u+d An1=Δu+4Δdu+4d <ref>https://arxiv.org/abs/hep-ph/9809255 PHYSICAL REVIEW D, VOLUME 59, 034013 Valence quark spin distribution functions Nathan Isgur , https://arxiv.org/abs/hep-ph/0411005 The Spin Structure of the Proton Steven D. Bass Rev.Mod.Phys.77:1257-1302,2005</ref>

One can use the two equations above and solve for the polarized quark distributions assuming the unpolarized are known and get , for example

Δdd=415(4+ud)An1+115(1+4ud)Ap1

Then using the above approximation for A_1

Δdd=415(4+ud)gn1Fn1+115(1+4ud)gp1Fp1


gd1(11.5ωD)(gn1+gp1)<ref> Eq. 28 from https://arxiv.org/abs/1505.07877 which is based on https://arxiv.org/abs/0809.4308</ref>


<references />


Delta_D_over_D