Difference between revisions of "Extracting DeltaDoverD from PionAsym"
(39 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Delta_D_over_D]] | ||
+ | |||
+ | ;Extraction of <math>\frac{\Delta d_v}{d_v}</math> from charged pion asymmetries | ||
+ | |||
+ | =Leading Order (LO) extraction= | ||
+ | |||
+ | ==Cross-section== | ||
+ | A leading order expression for charged pion semi-inclusive pion electro-production cross section, represented as a sum of the <math>\pi^+</math> and <math>\pi^-</math> cross sections, using proton or neutron targets can be written, using Eq. 9 & 10 from Ref.<ref name="Christova9907265"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>, as: | ||
+ | |||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d + \bar{d})]D_u^{\pi^+ + \pi^-} + 2 s D_u^{\pi^+ + \pi^-} </math> | ||
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}+ 2 s D_u^{\pi^+ + \pi^-} </math> | ||
+ | |}<br> | ||
+ | |||
+ | |||
+ | Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (<math>D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}</math> and <math>D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}</math> ) and charge (<math>D_u^{\pi^+} = D_d^{\pi^-}</math>) conjugation invariance for the fragmentation functions, the following equality holds:<br> | ||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
|- | |- | ||
− | |<math> | + | |<math>D_u^{\pi^+ \pm \pi^-} = D_u^{\pi^+} \pm D_u^{\pi^-} = D_d^{\pi^+ \pm \pi^-}</math> |
− | |} | + | |}<br> |
− | + | Strange quark contributions to the above SIDIS cross-section become ignorable due to the dominant contributions from the up and down quarks as x_{Bj} increases beyond 0.3 | |
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
|- | |- | ||
− | |<math>\sigma_p^{\pi^+ | + | |<math>\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d + \bar{d})]D_u^{\pi^+ + \pi^-}</math> |
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}</math> | ||
|}<br> | |}<br> | ||
+ | |||
+ | == Helicity Difference Cross Section== | ||
+ | |||
+ | |||
+ | The polarized cross section difference is defined as : | ||
+ | |||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
|- | |- | ||
− | |<math>\ | + | |<math>\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}</math> |
|}<br> | |}<br> | ||
+ | using the polarized cross section <math>(\sigma_{\alpha \beta})</math> where <math>\alpha</math> refers to the lepton helicity and <math>\beta</math> to the target helicity. | ||
+ | The charged pion helicity difference <math>(\Delta \sigma_p^{\pi^+ + \pi^-})</math> can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as | ||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
|- | |- | ||
− | |<math>\Delta \sigma_p^{\pi^+ | + | |<math>\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}</math> |
|}<br> | |}<br> | ||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
|- | |- | ||
− | |<math>\Delta \sigma_n^{\pi^+ | + | |<math>\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}</math> |
|}<br> | |}<br> | ||
− | + | The analogous expressions for the case of a Deuteron target are | |
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
|- | |- | ||
|<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | |<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
Line 36: | Line 70: | ||
and unpolarized:<br> | and unpolarized:<br> | ||
<br> | <br> | ||
+ | |||
+ | ==LO models for SIDIS cross section== | ||
+ | |||
+ | ==GJR08FFNS== | ||
+ | |||
+ | ==GSRV== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | The polarized cross section difference is defined as : | ||
+ | |||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}</math> | ||
+ | |}<br> | ||
+ | |||
+ | using the polarized cross section <math>(\sigma_{\alpha \beta})</math> where <math>\alpha</math> refers to the lepton helicity and <math>\beta</math> to the target helicity. | ||
+ | |||
+ | The charged pion helicity difference <math>(\Delta \sigma_p^{\pi^+ + \pi^-})</math> can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as | ||
+ | |||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}</math> | ||
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}</math> | ||
+ | |}<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | The analogous expressions for the case of a Deuteron target are | ||
Line 41: | Line 110: | ||
|- | |- | ||
|<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | |<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
− | | | + | |- |
− | + | |<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | |
− | + | |}<br> | |
+ | and unpolarized:<br> | ||
+ | <br> | ||
+ | The charged pion asymmetry may be defined as | ||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
Line 55: | Line 127: | ||
|<math>A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_{2H}^{\pi^+ \pm \pi^-}}{\sigma_{2H}^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_{2H}}^{\pi^+})_{1/2}-({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}-({\sigma_{2H}}^{\pi^-})_{3/2}]}{[({\sigma_{2H}}^{\pi^+})_{1/2}+({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}+({\sigma_{2H}}^{\pi^-})_{3/2}]}</math> | |<math>A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_{2H}^{\pi^+ \pm \pi^-}}{\sigma_{2H}^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_{2H}}^{\pi^+})_{1/2}-({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}-({\sigma_{2H}}^{\pi^-})_{3/2}]}{[({\sigma_{2H}}^{\pi^+})_{1/2}+({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}+({\sigma_{2H}}^{\pi^-})_{3/2}]}</math> | ||
|}<br> | |}<br> | ||
+ | |||
+ | where the fragmentations functions <math>D</math> do not contribute if independent fragmentation, and isospin and charge conjugation are invariant. | ||
+ | |||
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (<math>D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}</math> and <math>D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}</math> ) and charge (<math>D_u^{\pi^+} = D_d^{\pi^-}</math>) conjugation invariance for the fragmentation functions, the following equality holds:<br> | Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (<math>D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}</math> and <math>D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}</math> ) and charge (<math>D_u^{\pi^+} = D_d^{\pi^-}</math>) conjugation invariance for the fragmentation functions, the following equality holds:<br> | ||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
Line 107: | Line 182: | ||
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.<br> | The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.<br> | ||
+ | =Next to leading Order (NLO)= | ||
+ | <ref name="Sissakian074032"> A.N. Sissakian, O. Yu. Shevchenko, and O.N. Ivanov Phys Rev D 70 (074032) 2004 https://arxiv.org/abs/hep-ph/0411243</ref> | ||
+ | |||
+ | |||
+ | Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle https://arxiv.org/pdf/1612.01293.pdf | ||
+ | |||
+ | |||
+ | D. de Florian, R. Sassot, M. Epele, R. J. Herna ́ndez-Pinto, M. Stratmann. Phys. Rev. D 91 014035 (2015). | ||
− | + | Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD R. J. Herna ́ndez-Pinto 2016 https://arxiv.org/pdf/1609.02455.pdf | |
+ | |||
+ | 2014Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4, Zhong-Bo Kang, Enke Wang, Xin-Nian Wang, and Hongxi Xing | ||
+ | Phys. Rev. Lett. 112, 102001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.102001 | ||
=References= | =References= | ||
− | <references/ | + | 2009 talk by Xiodong Jiang, kinematic cuts identified (Q2 >1GeV2,W >2GeV,W' (missing mass of undetected hadrons) >1.5GeV,xF >0,pπ >2GeV/c) , http://www.int.washington.edu/talks/WorkShops/int_09_3/People/Jiang_X/Jiang.pdf |
+ | |||
+ | |||
+ | ==Bibliography== | ||
+ | |||
+ | </references> | ||
+ | |||
+ | ==Documents== | ||
+ | |||
+ | [[File:Christova_Leader_ hep-ph-9907265.pdf]] | ||
+ | |||
+ | [[File:Sissakian_PhysRevD70_074032_2004.pdf]] | ||
+ | |||
+ | |||
+ | https://twiki.cern.ch/twiki/bin/view/LHCPhysics/PDF | ||
+ | |||
+ | |||
+ | SIDIS cross sections | ||
+ | |||
+ | [[File:Asauryan_nucle-ex1103.1649.pdf]] | ||
+ | |||
+ | [[Delta_D_over_D]] |
Latest revision as of 15:35, 22 September 2018
- Extraction of from charged pion asymmetries
Leading Order (LO) extraction
Cross-section
A leading order expression for charged pion semi-inclusive pion electro-production cross section, represented as a sum of the
and cross sections, using proton or neutron targets can be written, using Eq. 9 & 10 from Ref.<ref name="Christova9907265"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>, as:
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin ( and ) and charge ( ) conjugation invariance for the fragmentation functions, the following equality holds:
Strange quark contributions to the above SIDIS cross-section become ignorable due to the dominant contributions from the up and down quarks as x_{Bj} increases beyond 0.3
Helicity Difference Cross Section
The polarized cross section difference is defined as :
using the polarized cross section
where refers to the lepton helicity and to the target helicity.The charged pion helicity difference
can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as
The analogous expressions for the case of a Deuteron target are
and unpolarized:
LO models for SIDIS cross section
GJR08FFNS
GSRV
The polarized cross section difference is defined as :
using the polarized cross section
where refers to the lepton helicity and to the target helicity.The charged pion helicity difference
can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as
The analogous expressions for the case of a Deuteron target are
and unpolarized:
The charged pion asymmetry may be defined as
where the fragmentations functions
do not contribute if independent fragmentation, and isospin and charge conjugation are invariant.Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (
The polarized and unpolarized cross sections for pion electroproduction can be written in terms of valence quark distribution functions in the valence region as:
and unpolarized:
In the valence region (
The ratio of polarized to unpolarized valence up and down quark distributions may then be written as
and
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.
Next to leading Order (NLO)
<ref name="Sissakian074032"> A.N. Sissakian, O. Yu. Shevchenko, and O.N. Ivanov Phys Rev D 70 (074032) 2004 https://arxiv.org/abs/hep-ph/0411243</ref>
Towards semi-inclusive deep inelastic scattering at next-to-next-to-leading order, Daniele Anderle https://arxiv.org/pdf/1612.01293.pdf
D. de Florian, R. Sassot, M. Epele, R. J. Herna ́ndez-Pinto, M. Stratmann. Phys. Rev. D 91 014035 (2015).
Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD R. J. Herna ́ndez-Pinto 2016 https://arxiv.org/pdf/1609.02455.pdf
2014Next-to-Leading Order QCD Factorization for Semi-Inclusive Deep Inelastic Scattering at Twist 4, Zhong-Bo Kang, Enke Wang, Xin-Nian Wang, and Hongxi Xing Phys. Rev. Lett. 112, 102001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.102001
References
2009 talk by Xiodong Jiang, kinematic cuts identified (Q2 >1GeV2,W >2GeV,W' (missing mass of undetected hadrons) >1.5GeV,xF >0,pπ >2GeV/c) , http://www.int.washington.edu/talks/WorkShops/int_09_3/People/Jiang_X/Jiang.pdf
Bibliography
</references>
Documents
File:Christova Leader hep-ph-9907265.pdf
File:Sissakian PhysRevD70 074032 2004.pdf
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/PDF
SIDIS cross sections