Difference between revisions of "Parameterizing the Ellipse Equation"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:part1d1.png]]
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 +
[[Plotting_Different_Frames|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Change_in_Wire_Bin_Number|<math>\vartriangleright </math>]]
  
The point that was the semi-major vertex, when rotated 6\[Degree] to the right becomes
+
</center>
 +
[[File:part1d3.png]]
  
<pre>
 
In[1603]:= rFromYtoX.{1.6831832367824053`, 0, 0} // MatrixForm
 
  
Out[1603]//MatrixForm= \!\(
+
----
TagBox[
 
RowBox[{"(", "",
 
TagBox[GridBox[{
 
{"1.6739625828969429`"},
 
{"0.17594055713873974`"},
 
{"0.`"}
 
},
 
GridBoxAlignment->{
 
      "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
 
        "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
 
GridBoxSpacings->{"Columns" -> {
 
Offset[0.27999999999999997`], {
 
Offset[0.5599999999999999]},
 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
 
Offset[0.2], {
 
Offset[0.4]},
 
Offset[0.2]}, "RowsIndexed" -> {}}],
 
Column], "", ")"}],
 
Function[BoxForm`e$,
 
MatrixForm[BoxForm`e$]]]\)
 
</pre>
 
  
  
Solving for the ellipse parameter given the angle and the corresponding X'' and Y'' components
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 +
[[Plotting_Different_Frames|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Change_in_Wire_Bin_Number|<math>\vartriangleright </math>]]
  
<pre>
+
</center>
X = 1.6739625828969429`;
 
Y = 0.17594055713873974`;
 
\[Theta] = 40;
 
t = t /. Solve[
 
  X^2 (Cos[6 \[Degree]])^2 +
 
    Y^2 (Sin[6 \[Degree]])^2 + \[CapitalDelta]a^2 +
 
    2 X Y Cos[6 \[Degree]] Sin[6 \[Degree]] +
 
    2 X \[CapitalDelta]a Cos[6 \[Degree]] +
 
    2 Y \[CapitalDelta]a Sin[6 \[Degree]] +
 
    X^2 (Sin[6 \[Degree]])^2 + Y^2 (Cos[6 \[Degree]])^2 -
 
    2 X Y Sin[6 \[Degree]] Cos[6 \[Degree]] ==
 
    a^2 (Cos[t])^2 (Cos[6 \[Degree]])^2 +
 
    b^2 (Sin[t])^2 (Sin[6 \[Degree]])^2 + \[CapitalDelta]a^2 +
 
    2 a b Cos[t] Cos[6 \[Degree]] Sin[t] Sin[6 \[Degree]] +
 
    2 a \[CapitalDelta]a Cos[t] Cos[6 \[Degree]] +
 
    2 b \[CapitalDelta]a Sin[t] Sin[6 \[Degree]] +
 
    a^2 (Cos[t])^2 (Sin[6 \[Degree]])^2 +
 
    b^2 (Sin[t])^2 (Cos[6 \[Degree]])^2 -
 
    2 a b Cos[t] Sin[6 \[Degree]] Cos[6 \[Degree]] Sin[t], t]
 
ClearAll[X, Y, \[Theta]];
 
</pre>
 
 
 
 
 
<pre>{-1.31406, 1.4676, 3.06482 - 1.66742 I, 3.06482 + 1.66742 I}</pre>
 
 
 
We can see that at the vertex position, the parameter reaches it's minimum at 1.4676.  This point reflects the right and left sides of the ellipse and the corresponding decreases in wire number as the parameter is increased.
 

Latest revision as of 20:38, 15 May 2018