Difference between revisions of "Right Hand Wall"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "The right hand wall This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation <center><…")
 
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
The right hand wall
+
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[The_Wires|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Left_Hand_Wall|<math>\vartriangleright </math>]]
 +
 
 +
</center>
 +
 
  
 
This same process can be applied to the side walls for the detector.  For the sidewalls, we have approximated them as lines following the equation
 
This same process can be applied to the side walls for the detector.  For the sidewalls, we have approximated them as lines following the equation
Line 7: Line 14:
 
Parameterizing this  
 
Parameterizing this  
  
<center><math>r \mapsto {cot 29.5^{\circ}\ y + 0.09156, y, 0}</math></center>
+
<center><math>r \mapsto {y\ cot\ 29.5^{\circ} + 0.09156, y, 0}</math></center>
 +
 
 +
 
 +
<center><math>t \mapsto {t\ cos\ 29.5^{\circ} + 0.09156, t\ sin\ 29.5^{\circ} , 0}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\begin{bmatrix}
 +
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\
 +
sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\
 +
0 & 0 & 1
 +
\end{bmatrix}\cdot
 +
\begin{bmatrix}
 +
x' \\
 +
y' \\
 +
z'
 +
\end{bmatrix}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
<center><math>\begin{bmatrix}
 +
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\
 +
sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\
 +
0 & 0 & 1
 +
\end{bmatrix}\cdot
 +
\begin{bmatrix}
 +
t\ cos\ 29.5^{\circ}+0.09156 \\
 +
t sin 29.5^{\circ}\\
 +
0
 +
\end{bmatrix}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<center><math>\begin{bmatrix}
 +
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
0.09156\ cos\ 6^{\circ}+t\ cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ} \\
 +
t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\
 +
0
 +
\end{bmatrix}</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\begin{bmatrix}
 +
x'' \\
 +
y'' \\
 +
z''
 +
\end{bmatrix}=
 +
\begin{bmatrix}
 +
0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6 ^{\circ}sin\ 29.5^{\circ}) \\
 +
0.09156\  sin\ 6 ^{\circ}+t\ (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \\
 +
0
 +
\end{bmatrix}</math></center>
 +
 
 +
Using the equation for y'' we can solve for t
 +
 
 +
<center><math>y''=0.09156\  sin\ 6^{\circ}+t (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \Rightarrow t=\frac{y''-0.09156\  sin\ 6 ^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}}</math></center>
 +
 
 +
Substituting this into the expression for x''
 +
 
 +
<center><math>x''=0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})</math></center>
 +
 
 +
 
 +
<center><math>x''=0.09156\ cos\ 6 ^{\circ}+\frac{y''-0.09156\  sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}} (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})</math></center>
 +
 
 +
 
 +
<center><math>x''=0.09156\ cos\ 6^{\circ}+\frac{y''-0.09156\  sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}} (cos\ 6 ^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ}sin\ 29.5^{\circ})</math></center>
 +
 
 +
 
 +
<center><math>x''=(0.994522)0.09156+\frac{y''-0.09156 (0.104528) }{0.0909769+.489726} (0.865588- 0.051472)</math></center>
 +
 
 +
 
 +
<center><math>x''=(0.091058)+\frac{y''-.0095706 }{0.580703} (.814116)</math></center>
 +
 
 +
 
 +
<center><math>x''=(0.091058)+(y''-.0095706 ) (1.401949)</math></center>
 +
 
 +
 
 +
<center><math>x''=1.401949\ y''-.013417+.091058</math></center>
 +
 
 +
 
 +
<center><math>x''=1.401949\ y''+.077641</math></center>
 +
 
 +
 
 +
[[File:rwall.png]]
 +
 
 +
 
 +
----
 +
 
 +
 
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 
 +
[[The_Wires|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Left_Hand_Wall|<math>\vartriangleright </math>]]
  
<center><math>t \mapsto {cos 29.5^{\circ}\ t + 0.09156, t sin\ 29.5^{\circ} , 0}</math></center>
+
</center>

Latest revision as of 20:33, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation

[math]x=cot\ 29.5^{\circ}\ y + 0.09156[/math]

Parameterizing this

[math]r \mapsto {y\ cot\ 29.5^{\circ} + 0.09156, y, 0}[/math]


[math]t \mapsto {t\ cos\ 29.5^{\circ} + 0.09156, t\ sin\ 29.5^{\circ} , 0}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} t\ cos\ 29.5^{\circ}+0.09156 \\ t sin 29.5^{\circ}\\ 0 \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ} \\ t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6 ^{\circ}sin\ 29.5^{\circ}) \\ 0.09156\ sin\ 6 ^{\circ}+t\ (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \\ 0 \end{bmatrix}[/math]

Using the equation for y we can solve for t

[math]y''=0.09156\ sin\ 6^{\circ}+t (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \Rightarrow t=\frac{y''-0.09156\ sin\ 6 ^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}}[/math]

Substituting this into the expression for x

[math]x''=0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]


[math]x''=0.09156\ cos\ 6 ^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}} (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]


[math]x''=0.09156\ cos\ 6^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}} (cos\ 6 ^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ}sin\ 29.5^{\circ})[/math]


[math]x''=(0.994522)0.09156+\frac{y''-0.09156 (0.104528) }{0.0909769+.489726} (0.865588- 0.051472)[/math]


[math]x''=(0.091058)+\frac{y''-.0095706 }{0.580703} (.814116)[/math]


[math]x''=(0.091058)+(y''-.0095706 ) (1.401949)[/math]


[math]x''=1.401949\ y''-.013417+.091058[/math]


[math]x''=1.401949\ y''+.077641[/math]


Rwall.png




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]