Difference between revisions of "Elliptical Cross Sections"

From New IAC Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Circular_Cross_Sections|<math>\vartriangleleft </math>]]
 
[[Circular_Cross_Sections|<math>\vartriangleleft </math>]]
Line 25: Line 25:
  
 
<center><math> 0<\theta<65^{\circ}</math></center>
 
<center><math> 0<\theta<65^{\circ}</math></center>
 +
  
 
----
 
----
  
  
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[Circular_Cross_Sections|<math>\vartriangleleft </math>]]
 
[[Circular_Cross_Sections|<math>\vartriangleleft </math>]]

Latest revision as of 20:23, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Elliptic Conic Section

If the conic is an ellipse, 0<e<1. This implies

[math]e=\frac{\sin \beta}{\sin \alpha}=\frac{\sin\ (25^{\circ})}{\sin (90^{\circ}-\theta)}[/math]



[math]\frac{sin (25^{\circ})}{cos (\theta)}=e[/math]


since e must be less than 1, this sets the limit of theta at less than 65 degrees. Since the limit of [math]\theta=0[/math], this implies the minimum eccentricity will be [math]e\approx .4291[/math]


This implies that the shape made on the the plane of the sector is an ellipse for angles

[math] 0\lt \theta\lt 65^{\circ}[/math]




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]