Difference between revisions of "Elliptical Cross Sections"
Jump to navigation
Jump to search
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
[[Circular_Cross_Sections|<math>\vartriangleleft </math>]] | [[Circular_Cross_Sections|<math>\vartriangleleft </math>]] | ||
| Line 25: | Line 25: | ||
<center><math> 0<\theta<65^{\circ}</math></center> | <center><math> 0<\theta<65^{\circ}</math></center> | ||
| + | |||
---- | ---- | ||
| − | <center><math>\ | + | |
| + | <center><math>\underline{\textbf{Navigation}}</math> | ||
[[Circular_Cross_Sections|<math>\vartriangleleft </math>]] | [[Circular_Cross_Sections|<math>\vartriangleleft </math>]] | ||
Latest revision as of 20:23, 15 May 2018
Elliptic Conic Section
If the conic is an ellipse, 0<e<1. This implies
since e must be less than 1, this sets the limit of theta at less than 65 degrees. Since the limit of , this implies the minimum eccentricity will be
This implies that the shape made on the the plane of the sector is an ellipse for angles