Difference between revisions of "Special Case of Equal Mass Particles"

From New IAC Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
[[Limits_based_on_Mandelstam_Variables|<math>\vartriangleleft </math>]]
+
[[Initial_CM_Frame_4-momentum_components|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Initial_Lab_Frame_4-momentum_components|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
+
[[Total_Energy_in_CM_Frame|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 63: Line 63:
  
 
This confirms that the mass remains constant between the frames of reference.
 
This confirms that the mass remains constant between the frames of reference.
 +
 +
 +
 +
 +
----
 +
 +
 +
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Initial_CM_Frame_4-momentum_components|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 +
[[Total_Energy_in_CM_Frame|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 18:53, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Special Case of Equal Mass Particles

For incoming electrons moving only in the z-direction, we can write


[math]{\mathbf P_1}+ {\mathbf P_2}= \left( \begin{matrix}E_1+E_2\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)={\mathbf P}[/math]



We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum


[math]\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)[/math]

Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant

[math]{\mathbf P^*}^2=(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=(m_{1}^*+m_{2}^*)^2[/math]


[math]{\mathbf P}^2=(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2=(m_{1}+m_{2})^2[/math]


This gives,

[math]\Longrightarrow (m_{1}^*+m_{2}^*)^2=(m_{1}+m_{2})^2[/math]


Using the fact that

[math]\begin{cases} m_{1}=m_{2} \\ m_{1}^*=m_{2}^* \end{cases}[/math]

since the rest mass energy of the electrons remains the same in inertial frames.


Substituting, we find

[math](m_{1}^*+m_{1}^*)^2=(m_{1}+m_{1})^2[/math]


[math]2m_{1}^*=2m_{1}[/math]


[math]m_{1}^*=m_{1}[/math]


[math]\Longrightarrow m_{1}=m^*_{1}\ ; m_{2}=m^*_{2}[/math]


This confirms that the mass remains constant between the frames of reference.





[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]