Difference between revisions of "Initial CM Frame 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "=Initial CM Frame 4-momentum components= <center>400 px</center> <center>'''Figure 2: Definition of variables in the Center of Mass Frame'''</center> …")
 
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
[[Initial_Lab_Frame_4-momentum_components|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 +
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 +
 
=Initial CM Frame 4-momentum components=
 
=Initial CM Frame 4-momentum components=
  
Line 15: Line 23:
  
  
<center><math>\frac {d\vec p}{dt}=0\Rightarrow \frac{d(m\vec v)}{dt}=\frac{c\ dm}{dt}\Rightarrow \frac{dm}{dt}=0</math></center>
+
<center><math>\frac {d\vec p}{dt}=0\Rightarrow \frac{d(m\vec v)}{dt}=\frac{v\ dm}{dt}\Rightarrow \frac{dm}{dt}=0</math></center>
  
  
Line 33: Line 41:
  
  
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s</math></center>
+
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2</math></center>
  
  
Line 46: Line 54:
  
 
<center><math>{\mathbf P^2}=({\mathbf P_1}+{\mathbf P_2})^2=(E_1+E_2)^2-(\vec p_1 +\vec p_2 )^2=(m_1+m_2)^2=s</math></center>
 
<center><math>{\mathbf P^2}=({\mathbf P_1}+{\mathbf P_2})^2=(E_1+E_2)^2-(\vec p_1 +\vec p_2 )^2=(m_1+m_2)^2=s</math></center>
 +
 +
 +
 +
----
 +
 +
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Initial_Lab_Frame_4-momentum_components|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 +
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
 +
 +
</center>

Latest revision as of 18:53, 15 May 2018

Navigation_


Initial CM Frame 4-momentum components

400px-CMcopy.png
Figure 2: Definition of variables in the Center of Mass Frame


Starting with the definition for the total relativistic energy:


E2p2c2+m2c4


E2p2c2=(mc2)2

Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant.


dpdt=0d(mv)dt=v dmdtdmdt=0


m=const


We can use 4-momenta vectors, i.e. P(Epxpypz)=(Ep) ,with c=1, to describe the variables in the CM Frame.


Using the fact that the scalar product of a 4-momenta with itself,


P1P1=PμgμνPν=(Epxpypz)(1000010000100001)(Epxpypz)


P1P1=E1E1p1p1=m21


is invariant.


Using this notation, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1+p2)=P

The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1+p2)2=(m1+m2)2=s




Navigation_