Difference between revisions of "4-vectors"
Jump to navigation
Jump to search
(46 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
− | [[ | + | [[Relativistic_Units|<math>\vartriangleleft </math>]] |
− | [[VanWasshenova_Thesis# | + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
− | [[ | + | [[4-momenta|<math>\vartriangleright </math>]] |
</center> | </center> | ||
Line 10: | Line 10: | ||
− | Using index notation, the time and space coordinates can be combined into a single "4-vector" <math>x^{\mu},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of length | + | Using index notation, the time and space coordinates can be combined into a single "4-vector" <math>\mathbf{x^{\mu}},\ \mu=0,\ 1,\ 2,\ 3</math>, that has units of length(i.e. ct is a distance). |
− | <center><math>\begin{bmatrix} | + | <center><math>\mathbf{R} \equiv |
+ | \begin{bmatrix} | ||
x^0 \\ | x^0 \\ | ||
x^1 \\ | x^1 \\ | ||
Line 37: | Line 38: | ||
− | + | Since <math>ds^2 </math> is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship. Following the rules of matrix multiplication, the dot product of two 4-vectors should follow the form: | |
+ | <center><math>(ds)^2\equiv d \mathbf{x_{\mu}} d \mathbf{x^{\mu}}</math></center> | ||
Line 50: | Line 52: | ||
dx^2 \\ | dx^2 \\ | ||
dx^3 | dx^3 | ||
− | \end{bmatrix | + | \end{bmatrix}</math></center> |
+ | |||
+ | This gives the desired results as expected. | ||
+ | <center><math>(ds)^2 \equiv (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}</math></center> | ||
− | The signs in the covariant term, | + | |
− | <center><math>\begin{bmatrix} | + | The change in signs in the covariant term, |
+ | <center><math>\mathbf{x_{\mu}}= \begin{bmatrix} | ||
dx_0 & -dx_1 & -dx_2 & -dx_3 | dx_0 & -dx_1 & -dx_2 & -dx_3 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> | ||
+ | |||
+ | from the contravarient term | ||
+ | |||
+ | <center><math>\mathbf{x^{\mu}}= | ||
+ | \begin{bmatrix} | ||
+ | dx^0 \\ | ||
+ | dx^1 \\ | ||
+ | dx^2 \\ | ||
+ | dx^3 | ||
+ | \end{bmatrix} | ||
+ | </math></center> | ||
+ | |||
Comes from the Minkowski metric | Comes from the Minkowski metric | ||
− | <center><math> | + | |
+ | <center><math>\eta_{\mu \mu}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
1 & 0 & 0 & 0 \\ | 1 & 0 & 0 & 0 \\ | ||
Line 66: | Line 85: | ||
0 & 0 & -1 & 0 \\ | 0 & 0 & -1 & 0 \\ | ||
0 & 0 & 0 & -1 | 0 & 0 & 0 & -1 | ||
− | \end{bmatrix} | + | \end{bmatrix}</math></center> |
− | |||
− | <center><math> | + | <center><math>ds^2= |
− | \begin{ | + | \begin{bmatrix} |
− | + | dx_0 & dx_1 & dx_2 & dx_3 | |
+ | \end{bmatrix}\cdot | ||
+ | \begin{bmatrix} | ||
+ | 1 & 0 & 0 & 0 \\ | ||
+ | 0 &-1 & 0 & 0 \\ | ||
+ | 0 & 0 & -1 & 0 \\ | ||
+ | 0 & 0 & 0 & -1 | ||
+ | \end{bmatrix}\cdot | ||
+ | \begin{bmatrix} | ||
+ | dx^0 \\ | ||
+ | dx^1 \\ | ||
+ | dx^2 \\ | ||
+ | dx^3 | ||
+ | \end{bmatrix} | ||
+ | </math></center> | ||
− | |||
− | + | <center><math>ds^2 \equiv \eta_{\nu}^{ \mu} \mathbf{dx^{\mu}} \mathbf{dx^{\mu}}=d\mathbf{R} \cdot d\mathbf{R}</math></center> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <center><math>\mathbf R \cdot \mathbf R = s = \eta_{\nu}^{ \mu} \mathbf{x^{\mu}} \mathbf{x^{\mu}}</math></center> | ||
− | |||
− | + | <center><math>\mathbf R_1 \cdot \mathbf R^1 = x_0^2-(x_1^2+x_2^2+x_3^2)</math></center> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Similarly, for two different 4-vectors, | |
− | |||
− | <center> | + | <center><math>\mathbf R_1 \cdot \mathbf R^2 = x_{0_1}x^{0_2}-(x_{1_1}x^{1_2}+x_{2_1}x^{2_2}+x_{3_1}x^{3_2})</math></center> |
+ | This is useful in that it shows that the scalar product of two 4-vectors is an invariant since the time-space interval is an invariant. | ||
Line 148: | Line 136: | ||
− | <center><math>\ | + | <center><math>\underline{\textbf{Navigation}}</math> |
− | [[ | + | [[Relativistic_Units|<math>\vartriangleleft </math>]] |
− | [[VanWasshenova_Thesis# | + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
− | [[ | + | [[4-momenta|<math>\vartriangleright </math>]] |
</center> | </center> |
Latest revision as of 18:47, 15 May 2018
4-vectors
Using index notation, the time and space coordinates can be combined into a single "4-vector"
, that has units of length(i.e. ct is a distance).
We can express the space time interval using the index notation
Since
is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship. Following the rules of matrix multiplication, the dot product of two 4-vectors should follow the form:
This gives the desired results as expected.
The change in signs in the covariant term,
from the contravarient term
Comes from the Minkowski metric
Similarly, for two different 4-vectors,
This is useful in that it shows that the scalar product of two 4-vectors is an invariant since the time-space interval is an invariant.