Difference between revisions of "Relativistic Units"

From New IAC Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[4-vectors|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 
=Relativistic Units=
 
=Relativistic Units=
  
Line 38: Line 46:
  
  
<center><math>\therefore </math>length units=time units</center>
+
<center><math>\therefore\ length\ units=time\ units</math></center>
  
 +
 +
This also implies that from the definition of an electromagnetic wave
 +
 +
 +
<center><math>c \equiv \frac{1}{\sqrt{\epsilon_0 \mu_0}} \rightarrow \epsilon_0=\mu_0=1</math></center>
  
  
Line 49: Line 62:
 
<center><math>\rightarrow E^2 = m^2+p^2</math></center>
 
<center><math>\rightarrow E^2 = m^2+p^2</math></center>
  
The Planck-Einstein relation and the de Broglie relation can be used to rewrite the 4-momenta vectors
 
  
<center><math>E=\hbar \omega \qquad \qquad p=k \hbar</math></center>
+
<center><math>\therefore\ energy\ units=mass\ units=momentum\ units</math></center>
 +
 
 +
 
 +
The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation
 +
 
 +
 
 +
<center><math>E^2 = m^2+p^2</math></center>
 +
 
 +
 
 +
 
 +
<center><math>\rightarrow E=\hbar \omega \qquad \qquad p=k \hbar</math></center>
 +
 
 +
 
 +
<center><math> \hbar^2 \omega^2 = m^2+k^2 \hbar^2</math></center>
 +
 
 +
 
 +
 
 +
Since the units of <math>\omega =\frac{1}{time}\ </math> and the units of <math>k=\frac{1}{length}</math> setting <math>\hbar=1</math> will preserve the relationship
 +
 
 +
 
 +
 
 +
<center><math> length\ units=time\ units</math></center>
 +
 
 +
 
 +
<center><math>\rightarrow Energy\ units=mass\ units=momentum\  units=\frac{1}{length\ units}=\frac{1}{time\ units}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
The amount of energy gained by a charged particle moving across an electric potential of 1 volt are declared to be electron-volts
 +
 
 +
 
 +
<center><math>1eV \equiv (1V)(1e^-)= \frac{1J}{1C}(1.6021766208(98)\times 10^{-19} C)=1.6021766208(98)\times 10^{-19} J</math></center>
  
  
 +
<center><math>\hbar \equiv 1.054571800(13)\times 10^{-34} J \cdot s \qquad c \equiv 2.99792458\frac{m}{s}</math></center>
  
  
<center><math>
+
<center><math>\hbar c = 3.16152649\times 10^{-26} J\cdot m</math></center>
\mathbf{P} \equiv
+
 
\begin{bmatrix}
+
 
p^0 \\
+
Converting to eV
p^1 \\
+
 
p^2 \\
+
<center><math>\frac{3.16152649\times 10^{-26} J\cdot m}{1.6021766208(98)\times 10^{-19} J}=\frac{1.9732696\times 10^{-7} eV \cdot m</math></center>
p^3
+
 
\end{bmatrix}=
+
 
\begin{bmatrix}
+
----
\frac{E}{c} \\
 
p_x \\
 
p_y \\
 
p_z
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\frac{\hbar \omega}{c} \\
 
\hbar k_x \\
 
\hbar k_y \\
 
\hbar k_z
 
\end{bmatrix}\rightarrow
 
\mathbf{\frac{P}{\hbar}}\equiv
 
\mathbf{K} \equiv
 
\begin{bmatrix}
 
k^0 \\
 
k^1 \\
 
k^2 \\
 
k^3
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\frac{\omega}{c} \\
 
k_x \\
 
k_y \\
 
k_z
 
\end{bmatrix}</math></center>
 
  
<math>\hbar</math> in SI units is defined as:
 
  
<center><math>\hbar \approx 1.0545718 \times 10^{-34} m \cdot kg \cdot \frac{m}{s}</math></center>
 
  
 +
<center><math>\underline{\textbf{Navigation}}</math>
  
Since c is already to be defined as equal to zero, this implies unit of mass must also be equal to one.  By convention, the mass of the proton is used
+
[[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[4-vectors|<math>\vartriangleright </math>]]
  
<center><math>M_{p} \equiv 1.6726219 \times 10^{-27} kg =1</math></center>
+
</center>

Latest revision as of 18:46, 15 May 2018

[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Relativistic Units

From the definition of 4-vectors shown earlier, we know that

[math]\mathbf{R} \equiv \begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix}= \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix} \qquad \qquad \mathbf{P} \equiv \begin{bmatrix} p^0 \\ p^1 \\ p^2 \\ p^3 \end{bmatrix}= \begin{bmatrix} \frac{E}{c} \\ p_x \\ p_y \\ p_z \end{bmatrix}[/math]


The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1. This implies:

[math]c=1=\frac{length}{time}[/math]


[math]\therefore\ length\ units=time\ units[/math]


This also implies that from the definition of an electromagnetic wave


[math]c \equiv \frac{1}{\sqrt{\epsilon_0 \mu_0}} \rightarrow \epsilon_0=\mu_0=1[/math]


The relativistic equation for energy

[math]E^2 \equiv m^2c^4+p^2c^2[/math]


[math]\rightarrow E^2 = m^2+p^2[/math]


[math]\therefore\ energy\ units=mass\ units=momentum\ units[/math]


The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation


[math]E^2 = m^2+p^2[/math]


[math]\rightarrow E=\hbar \omega \qquad \qquad p=k \hbar[/math]


[math] \hbar^2 \omega^2 = m^2+k^2 \hbar^2[/math]


Since the units of [math]\omega =\frac{1}{time}\ [/math] and the units of [math]k=\frac{1}{length}[/math] setting [math]\hbar=1[/math] will preserve the relationship


[math] length\ units=time\ units[/math]


[math]\rightarrow Energy\ units=mass\ units=momentum\ units=\frac{1}{length\ units}=\frac{1}{time\ units}[/math]



The amount of energy gained by a charged particle moving across an electric potential of 1 volt are declared to be electron-volts


[math]1eV \equiv (1V)(1e^-)= \frac{1J}{1C}(1.6021766208(98)\times 10^{-19} C)=1.6021766208(98)\times 10^{-19} J[/math]


[math]\hbar \equiv 1.054571800(13)\times 10^{-34} J \cdot s \qquad c \equiv 2.99792458\frac{m}{s}[/math]


[math]\hbar c = 3.16152649\times 10^{-26} J\cdot m[/math]


Converting to eV

[math]\frac{3.16152649\times 10^{-26} J\cdot m}{1.6021766208(98)\times 10^{-19} J}=\frac{1.9732696\times 10^{-7} eV \cdot m[/math]




[math]\underline{\textbf{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]