Difference between revisions of "Relativistic Units"

From New IAC Wiki
Jump to navigation Jump to search
 
(27 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
<center><math>\underline{\textbf{Navigation}}</math>
 +
 +
[[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[4-vectors|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 
=Relativistic Units=
 
=Relativistic Units=
  
Line 33: Line 41:
  
  
The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement.  For simplicity, the units of c can be chosen to be 1.
+
The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement.  For simplicity, the units of c can be chosen to be 1. This implies:
 +
 
 +
<center><math>c=1=\frac{length}{time}</math></center>
 +
 
 +
 
 +
<center><math>\therefore\ length\ units=time\ units</math></center>
 +
 
 +
 
 +
This also implies that from the definition of an electromagnetic wave
 +
 
 +
 
 +
<center><math>c \equiv \frac{1}{\sqrt{\epsilon_0 \mu_0}} \rightarrow \epsilon_0=\mu_0=1</math></center>
 +
 
 +
 
 +
The relativistic equation for energy
 +
 
 +
<center><math>E^2 \equiv m^2c^4+p^2c^2</math></center>
 +
 
 +
 
 +
<center><math>\rightarrow E^2 = m^2+p^2</math></center>
 +
 
 +
 
 +
<center><math>\therefore\ energy\ units=mass\ units=momentum\ units</math></center>
 +
 
 +
 
 +
The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation
 +
 
 +
 
 +
<center><math>E^2 = m^2+p^2</math></center>
 +
 
  
  
DeBroglie's equation and the wave number can be used to rewrite the 4-momenta vectors
+
<center><math>\rightarrow E=\hbar \omega \qquad \qquad p=k \hbar</math></center>
  
<center><math>E=\hbar \omega \qquad k=\frac{p}{\hbar} \rightarrow p=k \hbar</math></center>
 
  
 +
<center><math> \hbar^2 \omega^2 = m^2+k^2 \hbar^2</math></center>
  
  
  
 +
Since the units of <math>\omega =\frac{1}{time}\ </math> and the units of <math>k=\frac{1}{length}</math> setting <math>\hbar=1</math> will preserve the relationship
  
<center><math>
 
\mathbf{P} \equiv
 
\begin{bmatrix}
 
p^0 \\
 
p^1 \\
 
p^2 \\
 
p^3
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\frac{E}{c} \\
 
p_x \\
 
p_y \\
 
p_z
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\frac{\hbar \omega}{c} \\
 
\hbar k_x \\
 
\hbar k_y \\
 
\hbar k_z
 
\end{bmatrix}\rightarrow
 
\mathbf{\frac{P}{\hbar}}\equiv
 
\mathbf{K} \equiv
 
\begin{bmatrix}
 
k^0 \\
 
k^1 \\
 
k^2 \\
 
k^3
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\frac{\omega}{c} \\
 
k_x \\
 
k_y \\
 
k_z
 
\end{bmatrix}</math></center>
 
  
<math>\hbar</math> in SI units is defined as:
 
  
<center><math>\hbar \approx 1.0545718 \times 10^{-34} m \cdot kg \cdot \frac{m}{s}</math></center>
+
<center><math> length\ units=time\ units</math></center>
 +
 
 +
 
 +
<center><math>\rightarrow Energy\ units=mass\ units=momentum\  units=\frac{1}{length\ units}=\frac{1}{time\ units}</math></center>
 +
 
 +
 
 +
 
 +
 
 +
The amount of energy gained by a charged particle moving across an electric potential of 1 volt are declared to be electron-volts
 +
 
 +
 
 +
<center><math>1eV \equiv (1V)(1e^-)= \frac{1J}{1C}(1.6021766208(98)\times 10^{-19} C)=1.6021766208(98)\times 10^{-19} J</math></center>
 +
 
 +
 
 +
<center><math>\hbar \equiv 1.054571800(13)\times 10^{-34} J \cdot s \qquad c \equiv 2.99792458\frac{m}{s}</math></center>
 +
 
 +
 
 +
<center><math>\hbar c = 3.16152649\times 10^{-26} J\cdot m</math></center>
 +
 
 +
 
 +
Converting to eV
 +
 
 +
<center><math>\frac{3.16152649\times 10^{-26} J\cdot m}{1.6021766208(98)\times 10^{-19} J}=\frac{1.9732696\times 10^{-7} eV \cdot m</math></center>
 +
 
 +
 
 +
----
 +
 
 +
 
  
 +
<center><math>\underline{\textbf{Navigation}}</math>
  
Since c is already to be defined as equal to zero, this implies unit of mass must also be equal to one.  By convention, the mass of the proton is used
+
[[Relativistic_Frames_of_Reference|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]]
 +
[[4-vectors|<math>\vartriangleright </math>]]
  
<center><math>M_{p} \equiv 1.6726219 \times 10^{-27} kg =1</math></center>
+
</center>

Latest revision as of 18:46, 15 May 2018

Navigation_

Relativistic Units

From the definition of 4-vectors shown earlier, we know that

R[x0x1x2x3]=[ctxyz]P[p0p1p2p3]=[Ecpxpypz]


The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1. This implies:

c=1=lengthtime


 length units=time units


This also implies that from the definition of an electromagnetic wave


c1ϵ0μ0ϵ0=μ0=1


The relativistic equation for energy

E2m2c4+p2c2


E2=m2+p2


 energy units=mass units=momentum units


The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation


E2=m2+p2


E=ωp=k


2ω2=m2+k22


Since the units of ω=1time  and the units of k=1length setting =1 will preserve the relationship


length units=time units


Energy units=mass units=momentum units=1length units=1time units



The amount of energy gained by a charged particle moving across an electric potential of 1 volt are declared to be electron-volts


1eV(1V)(1e)=1J1C(1.6021766208(98)×1019C)=1.6021766208(98)×1019J


1.054571800(13)×1034Jsc2.99792458ms


c=3.16152649×1026Jm


Converting to eV

\frac{3.16152649\times 10^{-26} J\cdot m}{1.6021766208(98)\times 10^{-19} J}=\frac{1.9732696\times 10^{-7} eV \cdot m




Navigation_