Difference between revisions of "Relativistic Frames of Reference"
(38 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <center><math>\ | + | <center><math> \underline{\textbf{Navigation} }</math> |
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]] | [[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]] | ||
− | [[VanWasshenova_Thesis# | + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
− | [[ | + | [[Relativistic_Units|<math>\vartriangleright </math>]] |
</center> | </center> | ||
Line 17: | Line 17: | ||
+ | In the rest frame of v=0 | ||
− | <center><math>\begin{cases} | + | <center><math>v=0 \Rightarrow \begin{cases} |
t= t' \\ | t= t' \\ | ||
Line 25: | Line 26: | ||
y=y' \\ | y=y' \\ | ||
− | z=z'+vt | + | z=z'+vt' |
\end{cases}</math></center> | \end{cases}</math></center> | ||
+ | |||
+ | While conversely, from the rest frame of v'=0 | ||
+ | |||
+ | <center><math>v'=0 \Rightarrow \begin{cases} | ||
+ | t'= t \\ | ||
+ | |||
+ | x'=x \\ | ||
+ | |||
+ | y'=y \\ | ||
+ | |||
+ | z'=z-vt | ||
+ | \end{cases}</math></center> | ||
+ | |||
+ | |||
Line 46: | Line 61: | ||
− | <center><math>c=\frac{\sqrt{\Delta x^2+\Delta y^2+\Delta z^2}}{t}</math></center> | + | <center><math>c=\frac{\sqrt{\Delta x^2+\Delta y^2+\Delta z^2}}{\Delta t}</math></center> |
Line 52: | Line 67: | ||
− | <center><math>c=\frac{\sqrt{\Delta x^{'2}+\Delta y^{'2}+\Delta z^{'2}}}{t}</math></center> | + | <center><math>c=\frac{\sqrt{\Delta x^{'2}+\Delta y^{'2}+\Delta z^{'2}}}{\Delta t}</math></center> |
Line 79: | Line 94: | ||
− | <center><math> | + | <center><math>ds^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2</math></center> |
Since the speed of light is a constant for all frames of reference, this allows the space time interval to also be invariant for inertial frames. | Since the speed of light is a constant for all frames of reference, this allows the space time interval to also be invariant for inertial frames. | ||
− | <center><math> | + | <center><math>ds^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2</math></center> |
− | <center><math> | + | <center><math>ds^2\equiv c^2 dt^{'2}-dr^{'2}= c^2 dt^{2}-dr^2</math></center> |
− | <center><math> | + | <center><math>ds^2\equiv (c^2 -v^{'2})dt^{'2}= (c^2 -v^2)dt^{2}</math></center> |
Line 96: | Line 111: | ||
− | <center><math> | + | <center><math>ds^2\equiv c^2 dt^{'2}= (c^2 -v^2)dt^{2}</math></center> |
Line 110: | Line 125: | ||
− | + | <center><math>\Rightarrow \begin{cases} | |
+ | t'=\frac{1}{\gamma} t\\ | ||
+ | \\ | ||
+ | t=\gamma t' | ||
+ | \end{cases}</math></center> | ||
− | |||
+ | Assuming motion is only along the z direction | ||
− | |||
+ | <center><math>z \equiv ct\ \ \ \ z'\equiv ct'</math></center> | ||
− | |||
+ | Substituting these changes into the Galilean transformations | ||
− | |||
+ | <center><math>\underline{\textbf{Galilean\ Transformations}}\quad \underline{\textbf{Lorentz\ Transformations}}</math></center> | ||
− | <center> | + | <center><math> |
− | + | v=0\Rightarrow | |
+ | \begin{cases} | ||
t= t' \\ | t= t' \\ | ||
Line 135: | Line 155: | ||
y=y' \\ | y=y' \\ | ||
− | z=z'+vt | + | z=z'+vt' |
− | \end{cases}\Rightarrow \ \ | + | \end{cases} |
+ | \qquad \Rightarrow \qquad \quad | ||
\begin{cases} | \begin{cases} | ||
− | t= t' \\ | + | t=\gamma (t'+vz'/c^2) \\ |
x=x' \\ | x=x' \\ | ||
Line 144: | Line 165: | ||
y=y' \\ | y=y' \\ | ||
− | z=z'+vt | + | z=\gamma (z'+vt') |
− | \end{cases}</math></center> | + | \end{cases} |
+ | </math></center> | ||
+ | |||
+ | |||
+ | <center><math>v'=0\Rightarrow | ||
+ | \begin{cases} | ||
+ | t'= t' \\ | ||
+ | |||
+ | x'=x' \\ | ||
+ | |||
+ | y'=y' \\ | ||
+ | |||
+ | z'=z-vt | ||
+ | \end{cases} | ||
+ | \qquad \Rightarrow \qquad \quad | ||
+ | \begin{cases} | ||
+ | t'=\gamma (t-vz/c^2) \\ | ||
+ | |||
+ | x'=x' \\ | ||
+ | |||
+ | y'=y' \\ | ||
+ | |||
+ | z'=\gamma (z-vt) | ||
+ | \end{cases} | ||
+ | </math></center> | ||
---- | ---- | ||
− | <center><math>\ | + | <center><math> \underline{\textbf{Navigation} }</math> |
[[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]] | [[Uniform_distribution_in_Energy_and_Theta_LUND_files|<math>\vartriangleleft </math>]] | ||
− | [[VanWasshenova_Thesis# | + | [[VanWasshenova_Thesis#Moller_Scattering|<math>\triangle </math>]] |
− | [[ | + | [[Relativistic_Units|<math>\vartriangleright </math>]] |
</center> | </center> |
Latest revision as of 18:45, 15 May 2018
Relativistic Frames of Reference
From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that
In the rest frame of v=0
While conversely, from the rest frame of v'=0
Using Einstein's Theory of Relativity, we know that the speed of light is a constant, c, for all reference frames. In the unprimed frame, from the definition of speed:
where
Using the distance equation in a Cartesian coordinate system, the equation for the speed of light becomes
Following the postulate of Special Relativity, this implies for the primed frame
We can rewrite this as
This is possible since the ratios of distance to time are multiples of the same base, i.e. the square of the speed of light . Therefore for the relative change in the time in one frame, the distance must change by the same factor to maintain the same constant. With this we can write
This quantity is known as the time space interval
when the change is infinitesimal
Since the speed of light is a constant for all frames of reference, this allows the space time interval to also be invariant for inertial frames.
From the rest frame of v'=0
Assuming motion is only along the z direction
Substituting these changes into the Galilean transformations