Difference between revisions of "Limit of Scattering Angle Theta in Lab Frame"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
where <math>\theta_{1^*\ 2^{'*}}</math> and <math>\theta_{2^*\ 1^{'*}}</math>is the angle between the before and after momentum in the CM frame | where <math>\theta_{1^*\ 2^{'*}}</math> and <math>\theta_{2^*\ 1^{'*}}</math>is the angle between the before and after momentum in the CM frame | ||
+ | |||
+ | Using the relativistic relation <math>E^2=m^2+p^2</math> this reduces to | ||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^{*2}+2 \left | p_1^{*2}\right | \cos \theta_{1^*\ 2^{'*}}=-2p_2^{*2}+2 \left | p_2^{*2}\right | \cos \theta_{2^*\ 1^{'*}}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^{*2}(1- \cos \theta_{1^*\ 2^{'*}})=-2p_2^{*2}(1-\cos \theta_{2^*\ 1^{'*}})</math></center> | ||
+ | |||
+ | |||
+ | For <math>\theta_{1^*1^{'*}}=90^{\circ}</math>, by symmetry this implies <math>\theta_{1^*2^{'*}}=270^{\circ}</math> | ||
+ | |||
+ | |||
+ | <center><math>u=-2p_1^{*2}</math></center> | ||
+ | |||
+ | |||
+ | This can be rewritten again using the relativistic energy relation <math>E^2=m^2+p^2</math> | ||
+ | |||
+ | |||
+ | <center><math>u=2(m^{2}-E_1^{*2})=2(m^{2}-E_2^{*2})</math></center> | ||
=In the Lab Frame= | =In the Lab Frame= |
Revision as of 16:47, 15 March 2018
The quantity is known as the
In the CM Frame
where and is the angle between the before and after momentum in the CM frame
Using the relativistic relation
this reduces to
For , by symmetry this implies
This can be rewritten again using the relativistic energy relation
In the Lab Frame
with
and