Difference between revisions of "Frame of Reference Transformation"
Jump to navigation
Jump to search
Where
Where
is the Lorentz transformation matrix for motion in the z direction.
Where
Line 93: | Line 93: | ||
<center><math>\begin{bmatrix} | <center><math>\begin{bmatrix} | ||
dx'^0 \\ | dx'^0 \\ | ||
+ | \\ | ||
dx'^1 \\ | dx'^1 \\ | ||
+ | \\ | ||
dx'^2\\ | dx'^2\\ | ||
+ | \\ | ||
dx'^3 | dx'^3 | ||
\end{bmatrix}= | \end{bmatrix}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\frac{\partial x^{'0}}{\partial x^0} & \frac{\partial x^{'0}}{\partial x^1} & \frac{\partial x^{'0}}{\partial x^2} & \frac{\partial x^{'0}}{\partial x^3} \\ | \frac{\partial x^{'0}}{\partial x^0} & \frac{\partial x^{'0}}{\partial x^1} & \frac{\partial x^{'0}}{\partial x^2} & \frac{\partial x^{'0}}{\partial x^3} \\ | ||
+ | \\ | ||
\frac{\partial x^{'1}}{\partial x^0} & \frac{\partial x^{'1}}{\partial x^1} & \frac{\partial x^{'1}}{\partial x^2} & \frac{\partial x^{'1}}{\partial x^3} \\ | \frac{\partial x^{'1}}{\partial x^0} & \frac{\partial x^{'1}}{\partial x^1} & \frac{\partial x^{'1}}{\partial x^2} & \frac{\partial x^{'1}}{\partial x^3} \\ | ||
+ | \\ | ||
\frac{\partial x^{'2}}{\partial x^0} & \frac{\partial x^{'2}}{\partial x^1} & \frac{\partial x^{'2}}{\partial x^2} & \frac{\partial x^{'2}}{\partial x^3} \\ | \frac{\partial x^{'2}}{\partial x^0} & \frac{\partial x^{'2}}{\partial x^1} & \frac{\partial x^{'2}}{\partial x^2} & \frac{\partial x^{'2}}{\partial x^3} \\ | ||
+ | \\ | ||
\frac{\partial x^{'3}}{\partial x^0} & \frac{\partial x^{'3}}{\partial x^1} & \frac{\partial x^{'3}}{\partial x^2} & \frac{\partial x^{'3}}{\partial x^3} | \frac{\partial x^{'3}}{\partial x^0} & \frac{\partial x^{'3}}{\partial x^1} & \frac{\partial x^{'3}}{\partial x^2} & \frac{\partial x^{'3}}{\partial x^3} | ||
\end{bmatrix} | \end{bmatrix} | ||
Line 106: | Line 112: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
dx^0 \\ | dx^0 \\ | ||
+ | \\ | ||
dx^1 \\ | dx^1 \\ | ||
+ | \\ | ||
dx^2 \\ | dx^2 \\ | ||
+ | \\ | ||
dx^3 | dx^3 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> |
Revision as of 03:40, 10 July 2017
Using the Lorentz transformations and the index notation,
This can be expressed in matrix form as
Letting the indices run from 0 to 3, we can write
Using the Einstein convention, this can be written as
If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation,
Expressing this in matrix form
The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det
. The inner product is preserved,