Difference between revisions of "4-gradient"

From New IAC Wiki
Jump to navigation Jump to search
Line 22: Line 22:
  
  
Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector.
+
Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.
  
 
<center><math>\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center>
 
<center><math>\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center>

Revision as of 01:11, 10 July 2017

From the use of the Minkowski metric, converting between contravariant and covariant


[math]\mathbf x_{\mu} \equiv \eta_{\mu}^{\mu} \mathbf x^{\mu}[/math]


Where we have already defined the covariant term,

[math]\mathbf{x_{\mu}}= \begin{bmatrix} x_0 & -x_1 & -x_2 & -x_3 \end{bmatrix}[/math]

and the contravariant term

[math]\mathbf{x^{\mu}}= \begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix} [/math]


Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector, and the derivative with respect to a covariant coordinate transforms as a contravariant vector.

[math]\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}[/math]


[math]\mathbf \partial_\mu \equiv \Biggl [ \frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}\Biggr ]=\Biggl [\frac{\partial}{\partial x^0}\quad \frac{\partial}{\partial x^1}\quad \frac{\partial}{\partial x^2}\quad \frac{\partial}{\partial x^3}\Biggr ][/math]