Difference between revisions of "4-gradient"

From New IAC Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
<center><math>\mathbf x_{\mu} \equiv \eta_{\mu}^{\mu} \mathbf x^{\mu}</math></center>
 
<center><math>\mathbf x_{\mu} \equiv \eta_{\mu}^{\mu} \mathbf x^{\mu}</math></center>
  
 +
 +
Using matrix multiplication, we have already defined the covariant term,
 +
<center><math>\mathbf{x_{\mu}}= \begin{bmatrix}
 +
dx_0  & -dx_1 & -dx_2 & -dx_3
 +
\end{bmatrix}</math></center>
 +
 +
and the contravariant term
 +
 +
<center><math>\mathbf{x^{\mu}}=
 +
\begin{bmatrix}
 +
dx^0  \\
 +
dx^1 \\
 +
dx^2 \\
 +
dx^3
 +
\end{bmatrix}
 +
</math></center>
 +
 +
 +
Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector.
  
 
<center><math>\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center>
 
<center><math>\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center>

Revision as of 01:04, 10 July 2017

From the use of the Minkowski metric, converting between contravariant and covariant


[math]\mathbf x_{\mu} \equiv \eta_{\mu}^{\mu} \mathbf x^{\mu}[/math]


Using matrix multiplication, we have already defined the covariant term,

[math]\mathbf{x_{\mu}}= \begin{bmatrix} dx_0 & -dx_1 & -dx_2 & -dx_3 \end{bmatrix}[/math]

and the contravariant term

[math]\mathbf{x^{\mu}}= \begin{bmatrix} dx^0 \\ dx^1 \\ dx^2 \\ dx^3 \end{bmatrix} [/math]


Following the rules of matrix multiplication this implies that the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector.

[math]\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}[/math]


[math]\mathbf \partial_\mu \equiv \Biggl [ \frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}\Biggr ]=\Biggl [\frac{\partial}{\partial x^0}\quad \frac{\partial}{\partial x^1}\quad \frac{\partial}{\partial x^2}\quad \frac{\partial}{\partial x^3}\Biggr ][/math]