Difference between revisions of "4-gradient"
Jump to navigation
Jump to search
Line 5: | Line 5: | ||
− | <center><math>\nabla_{\mu}=\partial_{\mu}</math></center> | + | <center><math>\nabla_{\mu}=\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}</math></center> |
<center><math>\mathbf \partial_\mu \equiv \Biggl [ \frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}\Biggr ]=\Biggl [\frac{\partial}{\partial x^0}\quad \frac{\partial}{\partial x^1}\quad \frac{\partial}{\partial x^2}\quad \frac{\partial}{\partial x^3}\Biggr ]</math></center> | <center><math>\mathbf \partial_\mu \equiv \Biggl [ \frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}\Biggr ]=\Biggl [\frac{\partial}{\partial x^0}\quad \frac{\partial}{\partial x^1}\quad \frac{\partial}{\partial x^2}\quad \frac{\partial}{\partial x^3}\Biggr ]</math></center> |
Revision as of 23:59, 9 July 2017
From the use of the Minkowski metric, converting between contravariant and covariant