Difference between revisions of "4-gradient"

From New IAC Wiki
Jump to navigation Jump to search
Line 3: Line 3:
  
  
<center><math>\mathbf \partial_\mu \equiv[\frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}]=[\frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}]</math></center>
+
<center><math>\mathbf \partial_\mu \equiv \Right [ \frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}]=[\frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}]</math></center>

Revision as of 23:47, 9 July 2017

[math]\nabla_i=\frac{\partial}{\partial r_i}=\partial_i[/math]


[math]\mathbf \partial_\mu \equiv \Right [ \frac{\partial}{\partial t}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial y}\quad \frac{\partial}{\partial z}]=[\frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}\quad \frac{\partial}{\partial x}][/math]