Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 60: | Line 60: | ||
− | where in the center of mass frame <math>E_1=E_2 | + | where in the center of mass frame <math>E_1=E_2</math> and <math> p_1^*=-p_2^*</math> |
− | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_1^2+\vec p_1^2</math></center> | + | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_1^2+\vec p_1\ ^{*2}</math></center> |
− | <center><math>F=4\sqrt{(E_1^2+\vec p_1^2)^2-m^4}=4\sqrt{(p_1^2+m^2+p_1^2)^2-m^4}</math></center> | + | <center><math>F=4\sqrt{(E_1^2+\vec p_1\ ^{*2})^2-m^4}=4\sqrt{(p_1 \ ^{*2}+m^2+p_1\ ^{*2})^2-m^4}</math></center> |
− | <center><math>F=4\sqrt{(2p_1^2+m^2)^2-m^4}=4\sqrt{4p_1^4+m^4+4p_1^ | + | <center><math>F=4\sqrt{(2p_1\ ^{*2}+m^2)^2-m^4}=4\sqrt{4p_1\ ^{*4}+m^4+4p_1\ ^{*2}m-m^4}</math></center> |
− | <center><math>F_{cms}=4 \sqrt {4m^2\vec p_i\ ^2+4\vec p_1 \ ^{*4}}</math></center> | + | <center><math>F_{cms}=4 \sqrt {4m^2\vec p_i\ ^{*2}+4\vec p_1 \ ^{*4}}</math></center> |
− | <center><math>F_{cms}=4 \sqrt {\vec p_i\ ^ | + | <center><math>F_{cms}=4 \sqrt {\vec p_i\ ^{*2}4(m^2+\vec p_1 \ ^{*2})}</math></center> |
Line 97: | Line 97: | ||
− | <center><math>d\sigma=\frac{1}{4 \vec | + | <center><math>d\sigma=\frac{1}{4 \vec p_1\ ^*\sqrt {s}}|\mathcal{M}|^2 dQ</math></center> |
Revision as of 16:44, 4 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
where is the relative velocity between the particles in the frame where particle 1 is at rest
Using the relativistic definition of energy
Letting be the energy of particle 2 wiith respect to particle 1, the relativistic energy equation can be rewritten such that
where similarly
is defined as the momentum of particle 2 with respect to particle 1.
The relative velocity can be expressed as
The invariant form of F is
where in the center of mass frame
and
As shown earlier
In the center of mass frame