Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 12: | Line 12: | ||
− | <center><math>F=2E_1 2E_2|\vec {v}_1-\vec {v}_2|=4|E_1E_2\vec | + | <center><math>F=2E_1 2E_2|\vec {v}_1-\vec {v}_2|=4|E_1E_2\vec v|</math></center> |
Line 19: | Line 19: | ||
<center><math>v_1=\frac{|\vec p_1|}{E_1} \qquad \qquad v_2=\frac{|\vec p_2|}{E_2}</math></center> | <center><math>v_1=\frac{|\vec p_1|}{E_1} \qquad \qquad v_2=\frac{|\vec p_2|}{E_2}</math></center> | ||
+ | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
− | |||
Revision as of 00:56, 4 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
where v is the relative velocity between the particles. In the frame where one of the particles is at rest , the relative velocity can be expressed as
The invariant form of F is
In the center of mass frame