Difference between revisions of "Relativistic Differential Cross-section"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		<\center>
 
		
	
| Line 12: | Line 12: | ||
| − | <center><math>F=2E_1 2E_2|\vec {v}_1-\vec {v}_2|=4|E_1E_2\vec  | + | <center><math>F=2E_1 2E_2|\vec {v}_1-\vec {v}_2|=4|E_1E_2\vec v|</math></center> | 
| Line 19: | Line 19: | ||
| <center><math>v_1=\frac{|\vec p_1|}{E_1} \qquad \qquad v_2=\frac{|\vec p_2|}{E_2}</math></center> | <center><math>v_1=\frac{|\vec p_1|}{E_1} \qquad \qquad v_2=\frac{|\vec p_2|}{E_2}</math></center> | ||
| + | |||
| + | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
| − | |||
Revision as of 00:56, 4 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
where v is the relative velocity between the particles.  In the frame where one of the particles is at rest , the relative velocity can be expressed as
The invariant form of F is
 
In the center of mass frame