Difference between revisions of "Relativistic Differential Cross-section"

From New IAC Wiki
Jump to navigation Jump to search
Line 5: Line 5:
  
  
<center><math>dQ=(2π)^4\delta^4(p_1 + p_2 − p_1^' − p_2^')\frac{d^3p_1^'}{(2π)^32E_1^'}\frac{d^3p_2^'}{{(2π)^32E_2^'}</math></center>
+
<center><math>dQ=(2π)^4\delta^4(p_1 + p_2 − p_1^' − p_2^')\frac{d^3p_1^'}{(2π)^3 2E_1^'}\frac{d^3p_2^'}{(2π)^3 2E_2^'}</math></center>
  
  
  
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center>
 
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center>

Revision as of 15:34, 1 July 2017

[math]d\sigma=\frac{1}{F}|\mathcal{M}|^2 dQ[/math]

dQ is the invariant Lorentz phase space factor and F is the flux of incoming particles


[math]dQ=(2π)^4\delta^4(p_1 + p_2 − p_1^' − p_2^')\frac{d^3p_1^'}{(2π)^3 2E_1^'}\frac{d^3p_2^'}{(2π)^3 2E_2^'}[/math]


[math]\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2[/math]