Difference between revisions of "Relativistic Frames of Reference"

From New IAC Wiki
Jump to navigation Jump to search
Line 102: Line 102:
  
  
<center><math>s^2\equiv c^2 dt^{'2}-dr^{'2}= c^2 dt^{2}-dr^2</math></center>
+
<center><math>ds^2\equiv c^2 dt^{'2}-dr^{'2}= c^2 dt^{2}-dr^2</math></center>
  
  
<center><math>s^2\equiv (c^2 -v^{'2})dt^{'2}= (c^2 -v^2)dt^{2}</math></center>
+
<center><math>ds^2\equiv (c^2 -v^{'2})dt^{'2}= (c^2 -v^2)dt^{2}</math></center>
  
  
Line 111: Line 111:
  
  
<center><math>s^2\equiv c^2 dt^{'2}= (c^2 -v^2)dt^{2}</math></center>
+
<center><math>ds^2\equiv c^2 dt^{'2}= (c^2 -v^2)dt^{2}</math></center>
  
  

Revision as of 16:16, 26 June 2017

\underline{Navigation}

Relativistic Frames of Reference

From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that


Galilean Frames of Reference
Figure 2.1: Primed reference frame moving in the z direction with velocity v.


In the rest frame of v=0

v=0{t=tx=xy=yz=z+vt

While conversely, from the rest frame of v'=0

v=0{t=tx=xy=yz=zvt



Using Einstein's Theory of Relativity, we know that the speed of light is a constant, c, for all reference frames. In the unprimed frame, from the definition of speed:


speed=ΔDistanceΔTime


c=ΔdΔt


where

c=3×108 m/s

Using the distance equation in a Cartesian coordinate system, the equation for the speed of light becomes


c=Δx2+Δy2+Δz2Δt


Following the postulate of Special Relativity, this implies for the primed frame


c=Δx2+Δy2+Δz2Δt



We can rewrite this as


Δx2+Δy2+Δz2Δt2=c2=Δx2+Δy2+Δz2Δt2


This is possible since the ratios of distance to time are multiples of the same base, i.e. the square of the speed of light (3×108 ms)2. Therefore for the relative change in the time in one frame, the distance must change by the same factor to maintain the same constant. With this we can write


c2Δt2=Δx2+Δy2+Δz2     c2Δt2=Δx2+Δy2+Δz2



c2Δt2Δx2Δy2Δz2=c2Δt2Δx2Δy2Δz2


This quantity is known as the time space interval ds2 when the change is infinitesimal


ds2c2dt2dx2dy2dz2=c2dt2dx2dy2dz2


Since the speed of light is a constant for all frames of reference, this allows the space time interval to also be invariant for inertial frames.

ds2c2dt2dx2dy2dz2=c2dt2dx2dy2dz2


ds2c2dt2dr2=c2dt2dr2


ds2(c2v2)dt2=(c2v2)dt2


From the rest frame of v'=0


ds2c2dt2=(c2v2)dt2


dt2=(1v2c2)dt2


{dt=1v2c2dt=1γdtdt=11v2c2dt=γdt


{t=1γtt=γt


Assuming motion is only along the z direction


zct    zct



Substituting these changes into the Galilean transformations


Galilean\ Transformations_Lorentz\ Transformations_
v=0{t=tx=xy=yz=z+vt{t=γ(t+vz/c2)x=xy=yz=γ(z+vt)


v=0{t=tx=xy=yz=zvt{t=γ(tvz/c2)x=xy=yz=γ(zvt)


\underline{Navigation}