Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 45: | Line 45: | ||
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16E^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\cos^4{\frac{\theta}{2}}}-\frac{ | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16E^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\cos^4{\frac{\theta}{2}}}-\frac{32E^{*4}}{4E^{*2}\sin^2{\frac{\theta}{2}}4E^{*2}\cos^2{\frac{\theta}{2}}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\sin^4{\frac{\theta}{2}}}\right )</math></center> |
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left( \frac{16\sin^4{\frac{\theta}{2}}+16}{16\cos^4{\frac{\theta}{2}}}-\frac{32}{4\sin^2{\frac{\theta}{2}}4\cos^2{\frac{\theta}{2}}}+\frac{16\cos^4{\frac{\theta}{2}}+16}{16\sin^4{\frac{\theta}{2}}}\right )</math></center> |
Revision as of 02:35, 26 June 2017
Using the fine structure constant
In the center of mass frame the Mandelstam variables are given by:
Using the relationship