Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
| Line 31: | Line 31: | ||
<center><math>s \equiv 4E^{*2}</math></center> | <center><math>s \equiv 4E^{*2}</math></center> | ||
| + | |||
| + | |||
| + | Using the relationship | ||
| + | |||
| + | <center><math>\cos{\theta}=-1+\cos{\frac{\theta}{2}}</math></center> | ||
| + | |||
| Line 36: | Line 42: | ||
| − | <center><math>u \equiv -2E^{*2}(1+\cos{\theta})=-2E^{*2}\left (1+2\cos^2{\frac{\theta}{2}} | + | <center><math>u \equiv -2E^{*2}(1+\cos{\theta})=-2E^{*2}\left (1+2\cos^2{\frac{\theta}{2}}-1 \right )=-4E^{*2}\cos^2{\frac{\theta}{2}}</math></center> |
Revision as of 02:24, 26 June 2017
Using the fine structure constant
In the center of mass frame the Mandelstam variables are given by:
Using the relationship