Difference between revisions of "Limits based on Mandelstam Variables"

From New IAC Wiki
Jump to navigation Jump to search
Line 95: Line 95:
  
  
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°).  This implies for arccos -1, the range will include imaginary numbers.  Knowing that the range of the cosine function is -1 to +1 inclusive and the domain to be any angle
+
The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°).  This implies  
  
 
+
<center><math>\theta_{max}=180^{\circ}</math></center>
<center><math>z = \arccos{-1}</math></center>
 
 
 
 
 
<center><math>\cos{z} = \cos{\arccos{-1}}</math></center>
 
 
 
 
 
<center><math>\cos{z} = 3</math></center>
 
 
 
 
 
From Euler's formula
 
 
 
 
 
<center><math>\cos{x} = \frac{e^{i z} + e^{-i z}}{2}</math></center>
 
 
 
 
 
<center><math> \frac{e^{i z} + e^{-i z}}{2} = 3</math></center>
 
 
 
 
 
<center><math> e^{i z} + e^{-i z} = 6</math></center>
 
 
 
 
 
Multiply with <math>e^{i z}</math>
 
 
 
 
 
<center><math>e^{2i z} + 1 = 6e^{i z}</math></center>
 
 
 
 
 
<center>Letting <math>y = e^{i z}</math></center>
 
 
 
 
 
We get an quadratic equation:
 
 
 
 
 
<center><math>y^2 - 6y + 1 = 0</math></center>
 
 
 
 
 
<center><math>y = (6 ± √32)/2</math></center>
 
 
 
 
 
<center><math>y_1 = 5.828427 = e^{i z}</math></center>
 
 
 
 
 
 
 
<center><math>y_2 = 0.171573 = e^{i z}</math></center>
 
 
 
 
 
 
 
Apply the natural log on both sides gives the solution for arccos 3:
 
 
 
 
 
<center><math>z_1 = \frac{ln(5.828427) }{ i}=-1.76275i</math></center>
 
 
 
 
 
 
 
<center><math> z_2 = \frac{ln(0.171573) }{ i}=1.76275i</math></center>
 
 
 
 
 
Converting to polar coordinates:
 
 
 
<center><math>r \equiv |z|=sqrt{z^2}=1.76275</math></center>
 
 
 
Since
 
 
 
<center><math>z \equiv a+bi</math></center>
 
 
 
 
 
<center><math>\theta \equiv \arctan{\frac{\pm b}{a}}=\pm 90^{\circ}</math></center>
 
 
 
Since there is only an imaginary component.
 
 
 
 
 
 
 
<center>[[File:Imaginary_plane.png|thumb|center|500px|alt=Angle Theta with respect to imaginary plane|'''Figure 2.1:''' Angle theta measured with respect to imaginary plane.  ]]</center>
 

Revision as of 17:38, 12 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:


[math]s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]


[math]s+t+u \equiv 4m^2[/math]


Since

[math]s \equiv 4(m^2+\vec p \ ^{*2})[/math]


This implies

[math]s \ge 4m^2[/math]


In turn, this implies


[math] t \le 0 \qquad u \le 0[/math]


At the condition both t and u are equal to zero, we find


[math] t = 0 \qquad u = 0[/math]


[math]-2 p \ ^{*2}(1-cos\ \theta) = 0 \qquad -2 p \ ^{*2}(1+cos\ \theta) = 0[/math]


[math](-2 p \ ^{*2}+2 p \ ^{*2}cos\ \theta) = 0 \qquad (-2 p \ ^{*2}-2 p \ ^{*2}cos\ \theta) = 0[/math]


[math]2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2} \qquad -2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2}[/math]


[math]\cos\ \theta = 1 \qquad \cos\ \theta = -1[/math]


[math]\Rightarrow \theta_{t=0} = \arccos \ 1=0^{\circ} \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}[/math]

Holding u constant at zero we can find the maximum of t


[math]s+t_{max} \equiv 4m^2[/math]


[math]\Rightarrow t_{max}=4m^2-s[/math]


[math]t_{max}=4m^2-4m^2- 4p \ ^{*2}[/math]


[math]t_{max}=-4p \ ^{*2}[/math]


[math]-2 p \ ^{*2}(1-cos\ \theta)=-4p \ ^{*2}[/math]


[math](1-cos\ \theta)=2[/math]


[math]-cos\ \theta=1[/math]


[math] \theta_{max} \equiv \arccos -1[/math]


The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). This implies

[math]\theta_{max}=180^{\circ}[/math]