Difference between revisions of "4-vectors"

From New IAC Wiki
Jump to navigation Jump to search
Line 13: Line 13:
  
 
<center><math>\begin{bmatrix}
 
<center><math>\begin{bmatrix}
x_0 \\
+
x^0 \\
x_1 \\
+
x^1 \\
x_2 \\
+
x^2 \\
x_3
+
x^3
 
\end{bmatrix}=
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\begin{bmatrix}
Line 42: Line 42:
  
 
<center><math>\begin{bmatrix}
 
<center><math>\begin{bmatrix}
x_0' \\
+
x^0' \\
x_1' \\
+
x^1' \\
x_2 '\\
+
x^2 '\\
x_3'
+
x^3'
 
\end{bmatrix}=
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\begin{bmatrix}
\gamma (x_0-vx_3/c)  \\
+
\gamma (x^0-vx^3/c)  \\
x_1 \\
+
x^1 \\
x_2 \\
+
x^2 \\
\gamma (x_3-vx_0)
+
\gamma (x^3-vx^0)
 
\end{bmatrix}
 
\end{bmatrix}
 
=
 
=
 
\begin{bmatrix}
 
\begin{bmatrix}
\gamma (x_0-\beta x_3)  \\
+
\gamma (x^0-\beta x^3)  \\
x_1 \\
+
x^1 \\
x_2 \\
+
x^2 \\
\gamma (x_3-vx_0)
+
\gamma (x^3-vx^0)
 
\end{bmatrix}</math></center>
 
\end{bmatrix}</math></center>
  
Line 66: Line 66:
 
We can express the space time interval using the index notation
 
We can express the space time interval using the index notation
  
<center><math>ds^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2</math></center>
+
<center><math>(ds)^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2</math></center>
  
  
  
<center><math>ds^2\equiv dx_0^{'2}-dx_1^{'2}-dx_2^{'2}-dx_3^{'2}= dx_0^{2}-dx_1^2-dx_2^2-dx_3^2</math></center>
+
<center><math>(ds)^2\equiv (dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}= (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2</math></center>
 
----
 
----
  

Revision as of 17:21, 5 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

4-vectors

Using index notation, the time and space coordinates can be combined into a single "4-vector" [math]x^{\mu},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of length, i.e. ct is a distance.

[math]\begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix}= \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}[/math]


Using the Lorentz transformations and the index notation,

[math] \begin{cases} t'=\gamma (t-vz/c^2) \\ x'=x' \\ y'=y' \\ z'=\gamma (z-vt) \end{cases} [/math]


[math]\begin{bmatrix} x^0' \\ x^1' \\ x^2 '\\ x^3' \end{bmatrix}= \begin{bmatrix} \gamma (x^0-vx^3/c) \\ x^1 \\ x^2 \\ \gamma (x^3-vx^0) \end{bmatrix} = \begin{bmatrix} \gamma (x^0-\beta x^3) \\ x^1 \\ x^2 \\ \gamma (x^3-vx^0) \end{bmatrix}[/math]

Where [math]\beta \equiv \frac{v}{c}[/math]


We can express the space time interval using the index notation

[math](ds)^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2[/math]


[math](ds)^2\equiv (dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}= (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2[/math]


[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]