Difference between revisions of "4-vectors"

From New IAC Wiki
Jump to navigation Jump to search
Line 48: Line 48:
 
\end{bmatrix}=
 
\end{bmatrix}=
 
\begin{bmatrix}
 
\begin{bmatrix}
\gamma (x_0-vx_3/c^2)  \\
+
\gamma (x_0-vx_3/c)  \\
 +
x_1 \\
 +
x_2 \\
 +
\gamma (x_3-vx_0)
 +
\end{bmatrix}
 +
=
 +
\begin{bmatrix}
 +
\gamma (x_0-\beta x_3)  \\
 
x_1 \\
 
x_1 \\
 
x_2 \\
 
x_2 \\
 
\gamma (x_3-vx_0)
 
\gamma (x_3-vx_0)
 
\end{bmatrix}</math></center>
 
\end{bmatrix}</math></center>
 +
 +
Where <math>\beta \equiv \frac{v}{c}</math>
 
----
 
----
  

Revision as of 16:03, 5 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

4-vectors

Using index notation, the time and space coordinates can be combined into a single "4-vector" [math]x^{\mu},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of length, i.e. ct is a distance.

[math]\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}= \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}[/math]


Using the Lorentz transformations and the index notation,

[math] \begin{cases} t'=\gamma (t-vz/c^2) \\ x'=x' \\ y'=y' \\ z'=\gamma (z-vt) \end{cases} [/math]


[math]\begin{bmatrix} x_0' \\ x_1' \\ x_2 '\\ x_3' \end{bmatrix}= \begin{bmatrix} \gamma (x_0-vx_3/c) \\ x_1 \\ x_2 \\ \gamma (x_3-vx_0) \end{bmatrix} = \begin{bmatrix} \gamma (x_0-\beta x_3) \\ x_1 \\ x_2 \\ \gamma (x_3-vx_0) \end{bmatrix}[/math]

Where [math]\beta \equiv \frac{v}{c}[/math]



[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]