Difference between revisions of "Relativistic Frames of Reference"
Line 17: | Line 17: | ||
− | In the rest frame of v | + | In the rest frame of v=0 |
<center><math>\begin{cases} | <center><math>\begin{cases} | ||
Line 26: | Line 26: | ||
y=y' \\ | y=y' \\ | ||
− | z=z' | + | z=z'+vt' |
\end{cases}</math></center> | \end{cases}</math></center> | ||
Line 140: | Line 140: | ||
y=y' \\ | y=y' \\ | ||
− | z=z' | + | z=z'+vt' |
\end{cases} | \end{cases} | ||
\qquad \Rightarrow \qquad \quad | \qquad \Rightarrow \qquad \quad | ||
\begin{cases} | \begin{cases} | ||
− | t=\gamma (t' | + | t=\gamma (t'+vz'/c^2) \\ |
x=x' \\ | x=x' \\ | ||
Line 150: | Line 150: | ||
y=y' \\ | y=y' \\ | ||
− | z=\gamma (z'-vt') | + | z=\gamma (z'+vt') |
+ | \end{cases} | ||
+ | </math></center> | ||
+ | |||
+ | <center><math> | ||
+ | \begin{cases} | ||
+ | t'= t' \\ | ||
+ | |||
+ | x'=x' \\ | ||
+ | |||
+ | y'=y' \\ | ||
+ | |||
+ | z'=z-vt | ||
+ | \end{cases} | ||
+ | \qquad \Rightarrow \qquad \quad | ||
+ | \begin{cases} | ||
+ | t'=\gamma (t-vz/c^2) \\ | ||
+ | |||
+ | x'=x' \\ | ||
+ | |||
+ | y'=y' \\ | ||
+ | |||
+ | z'=\gamma (z-vt) | ||
\end{cases} | \end{cases} | ||
</math></center> | </math></center> |
Revision as of 15:16, 4 June 2017
Relativistic Frames of Reference
From the Galilean description of motion for a frame of reference moving relative to another frame considered stationary we know that
In the rest frame of v=0
Using Einstein's Theory of Relativity, we know that the speed of light is a constant, c, for all reference frames. In the unprimed frame, from the definition of speed:
where
Using the distance equation in a Cartesian coordinate system, the equation for the speed of light becomes
Following the postulate of Special Relativity, this implies for the primed frame
We can rewrite this as
This is possible since the ratios of distance to time are multiples of the same base, i.e. the square of the speed of light . Therefore for the relative change in the time in one frame, the distance must change by the same factor to maintain the same constant. With this we can write
This quantity is known as the time space interval
when the change is infinitesimal
Since the speed of light is a constant for all frames of reference, this allows the space time interval to also be invariant for inertial frames.
From the rest frame of v'=0
Assuming motion is only along the z direction
Substituting these changes into the Galilean transformations