Difference between revisions of "The Wires"
| Line 11: | Line 11: | ||
<center><math>x' = y\ sin\ 6^{\circ}+x_0</math></center> | <center><math>x' = y\ sin\ 6^{\circ}+x_0</math></center> | ||
| + | |||
| + | |||
<center><math>y' = y\ cos\ 6^{\circ}</math></center> | <center><math>y' = y\ cos\ 6^{\circ}</math></center> | ||
The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation, | The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation, | ||
| − | |||
| − | |||
| − | |||
| − | ) | + | <center><math>R(\theta_{yx})=\begin{bmatrix} |
| + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ | ||
| + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ | ||
| + | 0 &0 & 1 | ||
| + | \end{bmatrix}</math></center> | ||
| − | + | \begin{bmatrix} | |
| − | same vector | + | Components of \\ |
| + | same vector \\ | ||
in new system | in new system | ||
| − | + | \end{bmatrix}< | |
| − | )= | + | )=\begin{bmatrix} |
| − | transformation | + | Passive \\ |
| + | transformation \\ | ||
matrix | matrix | ||
| − | + | \end{bmatrix}\cdot | |
| − | + | \begin{bmatrix} | |
| − | vector in | + | Components of \\ |
| + | vector in \\ | ||
original system | original system | ||
| + | \end{bmatrix}</math></center> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math> | |
| − | + | \begin{bmatrix} | |
| − | + | x'' \\ | |
| − | + | y'' \\ | |
| − | y'' | ||
z'' | z'' | ||
| − | + | \end{bmatrix}= | |
| − | + | \begin{bmatrix} | |
| − | sin 6\ | + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ |
| − | 0 0 1 | + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ |
| − | + | 0 &0 & 1 | |
| − | + | \end{bmatrix}\cdot | |
| − | y' | + | \begin{bmatrix} |
| + | x' \\ | ||
| + | y' \\ | ||
z' | z' | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| − | + | <center><math> | |
| − | + | \begin{bmatrix} | |
| − | + | x'' \\ | |
| − | + | y'' \\ | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | y'' | ||
z'' | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | cos\ 6^{\circ} &-sin\ 6^{\circ} & 0 \\ | ||
| + | sin\ 6^{\circ} & cos\ 6^{\circ} &0 \\ | ||
| + | 0 &0 & 1 | ||
| + | \end{bmatrix}\cdot | ||
| + | \begin{bmatrix} | ||
| + | y'\ sin\ 6^{\circ}+x_0 \\ | ||
| + | y'\ cos\ 6^{\circ} \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math> | |
| − | + | \begin{bmatrix} | |
| − | + | x'' \\ | |
| − | y'' | + | y'' \\ |
z'' | z'' | ||
| − | + | \end{bmatrix}= | |
| − | + | \begin{bmatrix} | |
| − | y cos^2 6 \ | + | -y'\ cos\ 6^{\circ}sin\ 6^{\circ}+x_0\ cos\ 6^{\circ} +y'\ cos\ 6^{\circ}sin\ 6^{\circ}\\ |
| + | y'\ cos^2 6^{\circ}+x_0\sin\ 6^{\circ}+y sin^2 6^{\circ} \\ | ||
0 | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| + | |||
| − | |||
| − | |||
| − | |||
| − | + | <center><math> | |
| − | + | \begin{bmatrix} | |
| + | x'' \\ | ||
| + | y'' \\ | ||
| + | z'' | ||
| + | \end{bmatrix}= | ||
| + | \begin{bmatrix} | ||
| + | x_0\ cos\ 6^{\circ}\\ | ||
| + | y'\ cos^2 6^{\circ}+x_0\sin\ 6^{\circ}+y sin^2 6^{\circ} \\ | ||
0 | 0 | ||
| + | \end{bmatrix}</math></center> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | This relationship shows us that x'' is a constant in this frame while y'' can have any value, which is the horizontal line with respect to the y axis as expected. | |
Revision as of 16:22, 1 May 2017
We can parametrize the equations for the wires and wire midpoints to express the equation in vector form. In the y'-x' plane the general equation follows the relationship:
where is the point where the line crosses the x axis.
In this form we can easily see that the components of x and y , in the y'-x' plane are
The parameterization has reduced two equations with two variables, to two equations which depend on one variable. Working in the y-x plane, we will undergo a positive rotation,
\begin{bmatrix}
Components of \\
same vector \\
in new system
\end{bmatrix}<
)=\begin{bmatrix}
Passive \\
transformation \\
matrix
\end{bmatrix}\cdot
\begin{bmatrix}
Components of \\
vector in \\
original system
\end{bmatrix}</math>
This relationship shows us that x is a constant in this frame while y can have any value, which is the horizontal line with respect to the y axis as expected.