|
|
(4 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| | | |
− |
| |
− |
| |
− |
| |
− |
| |
− | ==Test for <math>\theta=20</math> and <math>\phi=0</math>==
| |
− |
| |
− | Substituting in the values found earlier for the case of <math>\theta=20^{\circ}</math> and <math>\phi=0</math>
| |
− |
| |
− |
| |
− | <center><math>a=\frac{a_1+a_2}{2}=1.0459</math></center>
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | <center><math>e\equiv \frac{sin(25^{\circ})}{cos(\theta)}= \frac{sin(25^{\circ})}{cos(20^{\circ})}=.4497</math></center>
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{r_2^{'2}-r_1^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)</math></center>
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | Since
| |
− | <center><math>\lVert \overrightarrow{D1P} \rVert \equiv \lVert \overrightarrow{F1P} \rVert \qquad \qquad \lVert \overrightarrow{D2P} \rVert \equiv \lVert \overrightarrow{F2P} \rVert</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>D1P \approx .576\ \text{m}\qquad D2P \approx 1.516\ \text{m}</math></center>
| |
− |
| |
− | The <math>x_1^' </math> distance from focal point 1 is:
| |
− | <center><math>x_1^'=\frac{1.516^2-.576^2}{4(1.0459)(.4497)}-(1.0459)(.4497)=\frac{1.97}{1.88}-.4703=.576\ \text{m}=r_1</math></center>
| |
− |
| |
− | This is the radius from focal point 1, which is to be expected since the y component is equal to zero for <math>\phi=0</math>
| |
− |
| |
− |
| |
− | The focii are located at
| |
− | <center><math>F1\equiv (-\Delta a+ae,0)=(-.1775+1.0459(.4497),0)=(.292,0)\ \text{m}\qquad F2\equiv (-\Delta a-ae,0)=(-.1775-1.0450(.4497),0)=(-6.478,0)\ \text{m}</math></center>
| |
− |
| |
− |
| |
− | This implies that with respect to the origin, x', we find
| |
− | <center><math>x'=x_1'+\Delta a+ae=.576+.292=.868\ \text{m}</math></center>
| |
− |
| |
− | This is verified with CED
| |
− |
| |
− | <center>[[File:x_in_detector_plane.png]]</center>
| |
− |
| |
− | Since the x' dimension is the hypotenuse in a right triangle of 65 degrees
| |
− |
| |
− |
| |
− | <center><math>x'=\frac{x_{lab}}{sin 65^{ \circ}}=.868=x'</math></center>
| |
− |
| |
− | ==Test for <math>\theta=20</math> and <math>\phi=1</math>==
| |
− | All previous quantities where calculated for <math>\theta=20^{\circ}</math> and do not depend on the angle <math>\phi</math>. The quantities that do change
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D1}=r_{D1}\ cos(\phi)=.5901cos(1^{\circ}))=.5900\text {m}\qquad y_{D1}=r_{D1}cos(\phi)=.5901 sin(1^{\circ}))=.0103\qquad z_{D1}=r_{D1} cot(\theta)=.5901cot(20)=1.6212\ \text{m}</math>
| |
− | |}
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D2}=r_{D2} cos(\phi)=1.3055cos(1^{\circ}))=1.3053\text {m}\qquad y_{D2}=r_{D2} sin(\phi)=1.3055sin(1^{\circ}))=.0228\qquad z_{D2}=r_{D2} cot(\theta)=1.3055cot(20)=3.5868\ \text{m}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_P=\frac{2.53cos(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cos(1^{\circ}))}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=0.7869</math>
| |
− | |}
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_P=\frac{2.53sin(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53sin(1^{\circ}))}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=.0137</math>
| |
− | |}
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>z_P=\frac{2.53cot(\theta)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}=\frac{2.53cot(20^{\circ})}{(cot(20^{\circ})+cos(1^{\circ}))cot(65^{\circ})}=2.1624</math>
| |
− | |}
| |
− |
| |
− |
| |
− | <center><math>D2P=\sqrt{(x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2}=\sqrt{(1.3053-0.7869)^2+(.0228-.0137)^2+(3.5868-2.1624)^2}=\sqrt{(.5184)^2+(.0091)^2+(1.4244)^2}=1.51582872713\ \text{m}</math></center>
| |
− |
| |
− |
| |
− | <center><math>D1P=\sqrt{(x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2}=\sqrt{(0.7871-.5900)^2+(.0137-.0103)^2+(2.1624-1.6212)^2}=\sqrt{(.1971)^2+(.0034)^2+(.5412)^2}=.575983862621\ \text{m}</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{1.5158^{'2}-.5758^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)=.575\ \text{m}</math></center>
| |
− |
| |
− |
| |
− |
| |
− | Using the pythagorean theorem
| |
− | <center><math>y'=\sqrt{.576^2-.575^2}=.03\ \text{m}</math></center>
| |
− |
| |
− |
| |
− | The two possible answers denote shifting to the left on right on the y axis. We take the direction of positive and negative to be the same as the sign convention for the angle phi starting on the x axis and shifting positive clockwise. A shift of 1 degree in phi at theta equal to 20 degrees only results in a small change in the x and y. This changes depending on the angles.
| |
− |
| |
− | =Function for the change in x' in the detector frame for change in <math>\phi</math> and constant <math>\theta</math> in the lab frame=
| |
− |
| |
− | <center><math>D2P=\sqrt{(x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2}</math></center>
| |
− |
| |
− |
| |
− | <center><math>D1P=\sqrt{(x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2}</math></center>
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae</math></center>
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D1}=r_{D1}\ cos(\phi)\qquad y_{D1}=r_{D1}cos(\phi)\qquad z_{D1}=r_{D1} cot(\theta)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D2}=r_{D2} cos(\phi)\qquad y_{D2}=r_{D2} sin(\phi)\qquad z_{D2}=r_{D2} cot(\theta)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_P=\frac{2.53cos(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_P=\frac{2.53sin(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>z_P=\frac{2.53cot(\theta)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{x_{D2}^2-2x_Px_{D2}+x_P^2+y_{D2}^2-2y_Py_{D2}+y_P^2+z_{D2}^2-2z_Pz_{D2}+z_P^2-x_P^2+2x_Px_{D1}-x_{D1}^2-y_P^2+2y_Py_{D1}-y_{D1}^2-z_P^2+2z_Pz_{D1}-z_{D1}^2}{4ae}-ae</math></center>
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{(x_{D2}^2+y_{D2}^2)-(x_{D1}^2+y_{D1}^2)+z_{D2}^2-z_{D1}^2-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae</math></center>
| |
− |
| |
− |
| |
− | Expressing this as functions of <math>\phi</math> and non-differentiable constants
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{c_1+c_2-2x_P(\phi)x_{D2}(\phi)+2x_P(\phi)x_{D1}(\phi)-2y_P(\phi)y_{D2}(\phi)+2y_P(\phi)y_{D1}(\phi)-2z_P(\phi)c_3}{4c_4}-c_4</math></center>
| |
− |
| |
− | Differentiating with respect to <math>\phi</math>
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D1}=r_{D1} cos(\phi)\Rightarrow \dot x_{D1}=-r_{D1} sin(\phi)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_{D1}=r_{D1}sin(\phi)\Rightarrow \dot y_{D1}=r_{D1}cos(\phi)</math>
| |
− | |}
| |
− |
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D2}=r_{D2} cos(\phi)\Rightarrow \dot x_{D2}=-r_{D2} sin(\phi)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_{D2}=r_{D2}sin(\phi)\Rightarrow \dot y_{D2}=r_{D2}cos(\phi)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_P=\frac{2.52934271645cos(\phi)}{cot(\theta)+cos(\phi)cot(65^{\circ})}\Rightarrow \dot x_P=\frac{-2.52934271645cot(\theta)sin(\phi)}{(cos(\phi)cot(65^{\circ}+cot(\theta))^2}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_P=\frac{2.52934271645sin(\phi)}{cot(\theta)+cos(\phi)cot(65^{\circ})}\Rightarrow \dot y_P=\frac{-1.7206+2.52934271645 cos(\phi) cot(\theta)}{(cos(\phi) cot(65^{\circ}) + cot(\theta))^2}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>z_P=\frac{2.52934271645cot(\theta)}{cot(\theta)+cos(\phi)cot(65^{\circ})}\Rightarrow \dot z_P=\frac{-1.7206 cot(\theta)sin(\phi))}{(cos(\phi) cot(65) + cot(\theta))^2}</math>
| |
− | |}
| |
− |
| |
− | <center><math>\frac{dx_1^1}{d\phi}=\frac{-2}{4c_4}\frac{d}{d\phi}(x_P(\phi)x_{D2}(\phi))+\frac{2}{4c_4}\frac{d}{d\phi}(x_P(\phi)x_{D1}(\phi))-\frac{2}{4c_4}\frac{d}{d\phi}(y_P(\phi)y_{D2}(\phi))+\frac{2}{4c_4}\frac{d}{d\phi}(y_P(\phi)y_{D1}(\phi))-\frac{2c_3}{4c_4}\frac{d}{d\phi}z_P(\phi)</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>\frac{dx_1^1}{d\phi}=\frac{-2}{4c_4} \left ( (\dot x_P(\phi)x_{D2}(\phi)+x_P(\phi)\dot x_{D2}(\phi))-(\dot x_P(\phi)x_{D1}(\phi)+x_P(\phi)\dot x_{D1}(\phi))+(\dot y_P(\phi)y_{D2}(\phi)+y_P(\phi)\dot y_{D2}(\phi))-(\dot y_P(\phi)y_{D1}(\phi)+y_P(\phi)\dot y_{D1}(\phi))+c_3\dot z_P(\phi) \right )</math></center>
| |
− |
| |
− | ===Function for the wire number in the detector frame for change in <math>\phi</math> and constant <math>\theta</math> in the lab frame===
| |
− |
| |
− | Using the expression for wire number n in terms of <math>\theta</math> for the detector mid-plane where <math>\phi=0</math>:
| |
− |
| |
− | <center><math>n = \frac{-957.412}{\tan(\theta)+2.14437}+430.626</math></center>
| |
− |
| |
− | We can use the inverse of this function to find the neighboring wire's corresponding angle theta
| |
− |
| |
− | <center><math>\theta\equiv 4.49876 +0.293001 n+0.000679074 n^2-3.57132\times 10^{-6} n^3</math></center>
| |
− |
| |
− |
| |
− |
| |
− | <center><math>\theta(n \pm 1)\equiv 4.49876 +0.293001 (n \pm 1)+0.000679074 (n \pm 1)^2-3.57132\times 10^{-6} (n \pm 1)^3</math></center>
| |
− |
| |
− |
| |
− | We also know what the x' function must follow dependent on phi in the detector plane
| |
− |
| |
− | <center><math>x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae</math></center>
| |
− |
| |
− |
| |
− | <center><math>x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae</math></center>
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D1}=r_{D1}\ cos(\phi)\qquad y_{D1}=r_{D1}cos(\phi)\qquad z_{D1}=r_{D1} cot(\theta)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_{D2}=r_{D2} cos(\phi)\qquad y_{D2}=r_{D2} sin(\phi)\qquad z_{D2}=r_{D2} cot(\theta)</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>x_P=\frac{2.53cos(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>y_P=\frac{2.53sin(\phi)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}</math>
| |
− | |}
| |
− |
| |
− |
| |
− | {| class="wikitable" align="center"
| |
− | | style="background: gray" | <math>z_P=\frac{2.53cot(\theta)}{(cot(\theta)+cos(\phi)cot(65^{\circ})}</math>
| |
− | |}
| |
− |
| |
− | <center><math>r_{D1}=R_{Lower\ Dandelin}cos(\theta)=(ae-\Delta a) tan(65^{\circ})cos(\theta)\qquad \qquad r_{D2}=R_{Lower\ Dandelin}cos(\theta)=(ae+\Delta a) tan(65^{\circ})cos(\theta)</math></center>
| |
− |
| |
− | We can take this point to be the x axis intercept and use the fact that each wire is titled by 6 degrees to the horizontal in the plane of the detector to create an equation
| |
− |
| |
− | <center><math>x_{wire\ n}'=tan(6^{\circ})y'+x_{n_0}</math></center>
| |
− |
| |
− | where the initial wire and x' position at the given theta is represented by <math>n_0</math>
| |
− |
| |
− |
| |
− |
| |
− | This equation can be solved for a hypothetical wire 0, which will allow the wire number to be the multiplicative factor for the change from the starting position.
| |
− |
| |
− |
| |
− | <center><math>\frac{x_{n=1}}{sin 4.79^{\circ}}=\frac{2.52934}{sin 110.21^{\circ}} \Rightarrow x_{n=1}=.2252</math></center>
| |
− |
| |
− |
| |
− | Since each wire is separated by .01337 meters
| |
− |
| |
− |
| |
− |
| |
− | <center><math>.2252-.01337=.2117=x_{n=0}</math></center>
| |
− |
| |
− |
| |
− | Each wire becomes an equation of the form,
| |
− |
| |
− | <center><math>x_{wire\ n}'=tan(6^{\circ})y'+.2117+.01337\ n</math></center>
| |
− |
| |
− | This agrees with CED simulation
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | <center>[[File:DC_geom.png]]</center>
| |
− |
| |
− | ==Setting up Mathematica for DC Theta-Phi Isotropic Cone==
| |
− |
| |
− | <center>[[File:FirstPass.pdf]]</center>
| |
− |
| |
− |
| |
− |
| |
− | <center>[[File:SecondPass.pdf]]</center>
| |