Difference between revisions of "GEANT Moller Simulations Comparison"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "https://wiki.iac.isu.edu/index.php/Converting_to_barns https://wiki.iac.isu.edu/index.php/Check_Differential_Cross-Section Converting the number of electrons scattered per angl…")
 
Line 59: Line 59:
  
 
<center><math>t=1.3\times 10^{-5}\ s</math></center>
 
<center><math>t=1.3\times 10^{-5}\ s</math></center>
 
 
===Comparison of GEANT Simulation to Whitney Data===
 
 
 
{| class="wikitable" align="center" border=1
 
|+ '''Rates'''
 
|-
 
| Simulation || GEANT4 ||  Whitney
 
|-
 
| Event Cross-Section (nb) || .61 || 0.079
 
|-
 
|Moller Cross-Section (nb) || 0.58||0.075
 
|-
 
| Length of Target (cm)  || 1 || 5
 
|-
 
| t_{simulated} (s) || 1.3E-5 ||9.54E-5
 
|-
 
| N_{events} || 1026940 || 1001700
 
|-
 
| N_{Moller} || 975593 ||951138
 
|-
 
| N_{incident} || 4E7 || 6E7
 
|}
 
 
 
Moller events occur for about 2.5% of the incident electrons on a LH2 target.  We can assume the number of Moller events that occur within the DC range to be around 30% of the total Moller events occuring for the number of incident electrons for LH2 as well.  Since the differential cross-section over the angel theta is proportional to the differtial cross-section over wire number we can dividing the Moller differential cross-section by the product of the density and length of the target material
 

Revision as of 20:28, 30 December 2016

https://wiki.iac.isu.edu/index.php/Converting_to_barns

https://wiki.iac.isu.edu/index.php/Check_Differential_Cross-Section

Converting the number of electrons scattered per angle theta to barns, we can use the relation

[math]\mathcal{L}=\frac{R_{scattered}}{\sigma} = \Phi_{beam}\ \rho\ \ell [/math]


[math]\sigma=\frac{R_{scattered}}{\mathcal{L}} =\frac{R_{scattered}}{\Phi_{beam}\ \rho\ \ell}= \frac{R_{scattered}}{R_{incident}\ \rho\ \ell}=\frac{N_{scattered}}{\Delta t}\cdot \frac{\Delta t}{N_{incident}}\cdot \frac{1}{\rho \ell}[/math]

If the time is taken to be the same for the amount scattered as for the amount incident (the time simulated), this can be viewed as the probability of one incident electron producing a Moller event.


[math]\sigma=\frac{N_{scattered}}{N_{incident}}\frac{1}{\rho \ell}[/math]


While this expression has no explicit dependancies on energy, the ratio is a function of the energy, as well as the physical makeup of the target.

This gives, for LH2:

[math]\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} molecule}{1 mole} \times \frac{2\ atoms}{molecule}\times \frac{1m^3}{(100 cm)^3} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^{2}}{barn} =4.2\times 10^{-2} barns^{-1}[/math]


From earlier simulations for random angle Phi, we know that the full range of Theta is limited depending on the target material.


MollerThetaLab 4e7 LH2 11GeV.pngMollerThetaLab 4e7 NH3 11GeV.png


MollerThetaLab 4e7 LH2 11GeV Detector.pngMollerThetaLab 4e7 NH3 11GeV Detector.png


[math]\sigma = \frac{N_{events}}{N_{incident}\ \rho\ \ell}=\frac{975593}{40000000\ \cdot 4.2\times 10^{-2} barns^{-1}}=\frac{0.024}{4.2\times 10^{-2} barns^{-1}}=0.58 barns[/math]


[math]\sigma=\frac{R_{events}}{\mathcal{L}} \Rightarrow \mathcal{L}=\frac{R_{events}}{\sigma}[/math]


[math]\mathcal{L}=\frac{dN_{events}}{dt}\frac{1}{ \sigma}\Rightarrow \int_{0}^{t_{simulated}}\mathcal {L}\, dt= \int_{0}^{N_{events}}\frac{1}{\sigma}\, dN[/math]


[math]\mathcal{L} \cdot t_{simulated}=\frac{N_{events}}{\sigma}[/math]


For a Luminosity of [math]\mathcal{L}=\frac{1.3\times 10^{11}}{barn\cdot s}[/math]


[math]\frac{1.3\times 10^{11}}{barn\cdot s} \cdot t_{simulated}=\frac{975593}{.58\ barn}[/math]


[math]t=1.3\times 10^{-5}\ s[/math]