Difference between revisions of "Fast neutron damage to HPGe Detector"
Line 9: | Line 9: | ||
Formula used in the graph above : | Formula used in the graph above : | ||
− | <math>\frac{5\times 10^6}{(19066 * 60^2 * 24 * \frac{1}{(4*\pi * | + | <math>y=\frac{5\times 10^6}{(19066 * 60^2 * 24 * \frac{1}{(4*\pi * x^2)})}</math> |
== References == | == References == | ||
<references /> | <references /> |
Revision as of 06:42, 29 December 2016
A observable decrease in the energy resolution of a large HPGe was first seen after the irradiation of 5*10^7 n/cm^2<ref>P. H. Stelson, J. K. Dickens, S. Raman, and R. C. Trammell, “Deterioration of Large Ge(Li) Diodes Caused by Fast Neutrons,” Nuclear Instruments and Methods 98,481 (1972).</ref>, so 5*10^6 n/cm^2 is a conservative number to stay under.
The maximum neutron flux occurs right at the center of the detector, where the expression for integral flux is simply:
.The number of days it would take to reach an integral flux of 5*10^6 n/cm^2, as a function of the distance from source to HPGe face is shown below. The graph assumes the activity of the Cf-252 source as of 01/2017, which is 19,066 n/s.
Formula used in the graph above :
References
<references />