Difference between revisions of "LB RunGroupC Vertex"
Line 145: | Line 145: | ||
− | Below are the histograms for the 2cm line target in Y,X=0,Z=0 | + | Below are the histograms for the 2cm line target in Y,X=0,Z=0. The electrons were fired with an energy of 6 GeV at 25 degrees in theta at 0 degrees in phi. |
{|border="5" | {|border="5" | ||
Line 164: | Line 164: | ||
|}<br> | |}<br> | ||
− | + | Below are the histograms for a 2cm target along the Y axis, X = 0 Z = 0. The electrons were fired with an energy of 6 GeV at 25 degrees in theta and 180 degrees in phi. | |
− | + | {|border="5" | |
+ | ! || [-1.0 , -0.9] || [-0.9 , -0.8] || [-0.8 , -0.7] || [-0.7 , -0.6] || [-0.6 , -0.5] || [-0.5 , -0.4] || [-0.4 , -0.3] || [-0.3 , -0.2] || [-0.2 , -0.1] || [-0.1 , 0.0] | ||
+ | |- | ||
+ | || Resolution (cm) || | ||
+ | |- | ||
+ | || Vy Difference || | ||
+ | |- | ||
+ | || * || *|| *|| *|| *|| *|| *||* | ||
+ | |- | ||
+ | ! || [0.9 , 1.0] || [0.8 , 0.9] || [0.7 , 0.8] || [0.6 , 0.7] || [0.5 , 0.6] || [0.4 , 0.5] || [0.3 , 0.4] || [0.2 , 0.3] || [0.1 , 0.2] || [0.0 , 0.1] | ||
+ | |- | ||
+ | || Resolution (cm) || | ||
+ | |- | ||
+ | || Vy Difference || | ||
+ | |- | ||
+ | |}<br> | ||
Revision as of 20:07, 2 August 2016
Vertex Reconstruction studies
Inclusive electron GEMC 2.4 & Coatjava 2.4
Summary
Set all histogram ranges to -6,6 cm and bin sizes of 0.1 cm
Point target X,Y,Z=0 cm
No Rastering | |
---|---|
Vx Difference | |
Vy Difference | |
Vz Difference | |
X Resolution (cm) | 0.2362 +/- 0.0008 |
Y Resolution(cm) | 0.09809 +/- 0.00033 |
Z Resolution (cm) | 0.05435 +/- 0.00017 |
These histograms raise some questions. To begin I created a LUND file with 6 GeV incident electrons at 25 degrees in theta and 0 degrees in phi. All of the vertex positions were set to 0. I then ran GEMC 2.4 using the command line ~/src/CLAS/GEMC/source/gemc -USE_GUI=0 -INPUT_GEN_FILE="LUND,No_Raster.LUND" -N=75000 eg12_sol_No_Raster.gcard
which created an output file called eg12_sol_75k_No_Raster.ev. After that the reconstruction command line used was
~/src/CLAS/coatjava-2.4/bin/clas12-reconstruction -i eg12_sol_75k_No_Raster.ev-config GEOM::new=true -config MAG::torus=-1.0 -config MAG::solenoid=1.0 -o eg12_sol_75k_No_Raster_rec.evio -s DCHB:DCTB:EC:FTOF:EB -config DATA::mc=true -config DCTB::useRaster=true
After the reconstruction a root file was created using
~/src/CLAS/evio2root/bin/evio2root eg12_sol_75k_No_Raster_rec.evio eg12_sol_75k_No_Raster_rec.root 75000
A plot was then created to show the X Vertex and Y Vertex Differences
The first question is why is there a shift in the Y Difference. What would make X more centered around 0? The next question is when rastering begins, why do the resolutions in the X Vertices remain unchanged while the resolutions in the Y Vertices change?
Point in 2-D but extended target in 1-D
Two vertex variables are fixed at zero and the third vertex variable is altered
Extended target -3 < Z < 3 cm
Extended target in Z. Vy shift analysis
All Histograms below were created by simply making the target longer along the Z axis. Each case uses vertex points for X and Y ranging from -1cm to 1cm
It would seem that increasing the length of the target in the Z direction has an effect on the resolution of the Y vertex position along with how far the center of the Gaussian peak will shift for the Y vertex differences.
Localized Vertex Resolution Investigation of Line Targets
GEMC was ran to create electrons being produced in a line along certain axes. These include three separate 2cm targets centered at (0,0,0) in the X, Y , and Z directions. The final target is a line along the Z axis centered at (0,0,0) that is 6cm long. The generated electrons were shot at 25 degrees in theta and 0 degrees in phi at an energy of 6GeV.
Here is an example of how the cuts were made. Consider the case of a 2cm line target in the Z direction centered at (0,0,0). Closed intervals begin at the end of the target and are 0.1cm long. So the first interval would be [-1.0,-0.9], then the next would be [-0.9, -0.8] and so on until the entire target is covered. The events in the EVENTHB bank were cut so that in any given interval there would be a margin of +/- 1cm to remove any outliers that may cause the histograms to have long tails.
Below are the histograms for the 2cm line target in Y,X=0,Z=0. The electrons were fired with an energy of 6 GeV at 25 degrees in theta at 0 degrees in phi.
Below are the histograms for a 2cm target along the Y axis, X = 0 Z = 0. The electrons were fired with an energy of 6 GeV at 25 degrees in theta and 180 degrees in phi.
[-1.0 , -0.9] | [-0.9 , -0.8] | [-0.8 , -0.7] | [-0.7 , -0.6] | [-0.6 , -0.5] | [-0.5 , -0.4] | [-0.4 , -0.3] | [-0.3 , -0.2] | [-0.2 , -0.1] | [-0.1 , 0.0] | |
---|---|---|---|---|---|---|---|---|---|---|
Resolution (cm) | ||||||||||
Vy Difference | ||||||||||
* | * | * | * | * | * | * | * | |||
[0.9 , 1.0] | [0.8 , 0.9] | [0.7 , 0.8] | [0.6 , 0.7] | [0.5 , 0.6] | [0.4 , 0.5] | [0.3 , 0.4] | [0.2 , 0.3] | [0.1 , 0.2] | [0.0 , 0.1] | |
Resolution (cm) | ||||||||||
Vy Difference |
Below are the Histograms for a 2cm long target in the X Direction with a 6GeV electron fired at 25 degrees in theta and 90 degrees in phi
Below are the Vx Differences using a 2cm target in X with incident 6 GeV electrons at 25 degrees in theta and 270 degrees in phi
Elastic electron proton GEMC 2.4 & Coatjava 2.4
References
https://clasweb.jlab.org/wiki/index.php/TF_EG12_Vertex#Z_resolution_With_micro-megas