Difference between revisions of "Niowave 9-2015"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "The energy deposited by electrons scattered into a 3.48 diameter stainless steel beam pipe (1.65 mm thick) from a PbBi target as a function of a uniform Solenoidal magnetic fiel…")
 
Line 1: Line 1:
The energy deposited by electrons scattered into a 3.48 diameter stainless steel beam pipe (1.65 mm thick)  from a PbBi target as a function of a uniform Solenoidal magnetic field.
+
2mm thick PbBi, 10 MeV,  point source
 +
G4beamline pencil beam 10 cm radius
 +
<pre>
 +
beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
 +
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
 +
      meanMomentum=10. sigmaE=0. maxR=10.
 +
</pre>
 +
 
  
 
 
{| border="1"
 
{| border="1"
{| border="1"
+
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
| B-field (Tesla) || Hot Spot (<math>MeV/e^-</math>)
+
|-
 +
| 1    ||1138,1154,1097,1159,1125 =1135<math>\pm</math>25 ||
 +
|-
 +
| 1.5    || 1668,1701,1639, 1644, 1628=1656<math>\pm</math>29 ||
 +
|-
 +
| 2    || 1937,1930,1851,1874,1945=1907<math>\pm</math>42  ||
 +
|-
 +
| 3|| 1889,1821,1852,1809,1859=1846<math>\pm</math>32 ||
 +
|-
 +
| 4||1726,1696,1673,1693,1681=1694<math>\pm</math> 20 ||
 +
|-
 +
| 5|| 1566,1543,1546,1625,1566=1569<math>\pm</math>33 ||
 +
|-
 +
| 6|| 1549, 1486,1564,1545,1452=1520<math>\pm</math> 50 ||
 +
|-
 +
| 7|| 1462,1327, 1407,1489 ,1477=1432<math>\pm</math> 67  ||
 +
|-
 +
|8|| 1289, 1335,1280, 1271, 1280 = 1291<math>\pm</math> 25 ||
 +
|-
 +
| 10|| 1141,1241, 1199, 1202, 1148 =1186<math>\pm</math>42 ||
 
|-
 
|-
| 0.0  || 0.35
 
|-
 
|  0.3    ||  0.35
 
|-
 
|  1.0  || 0.35
 
|-
 
|  1.5  || 0.22
 
|-
 
|  2.0  || 0.10
 
|-
 
|  4.0  || 0.002
 
|+
 
 
|}
 
|}
  
  
To convert this deposited energy per incident electron on the target to a heat load in the pipe you need to divide by the area of the pipe.
 
  
A histogram is filled with 1 cm bins along the Z axis.  The surface area becomes <math>1 cm \times 2 \pi 3.48/2 = 10.933 cm^2</math>.  The beam pipe diameter assumed is 3.48 cm.
+
Below is the result using minerve
  
When filling the histogram binned 1 cm in Z, you should weight it by the amount of depositred energy divided by the circumference of the pipe and divided by the number of incident electrons on the target (5 million).  The energy units are converted to keV by multiplying the numberator by 100 or in this case dividing by 5000 instead of 5 million.
+
{| border="1"
 +
| PbBi Thickness (mm) || #positrons/million electrons (G4Beamline)|| #positrons/million electrons (MCNPX)
 +
|-
 +
| 1    || 981,946,985,1046,1017 || 1091
 +
|-
 +
| 1.5    || 1494,1444 ,1447,1409 ,1486|| 1728
 +
|-
 +
| 2    || 1686,1700,1610, 1682,1656<math>\pm</math> 43 || 1984
 +
|-
 +
| 3|| 1648,1573, 1524,1670, 1592<math>\pm</math> 13|| 1986
 +
|-
 +
| 4||1528,1538, 1438, 1468, 1577<math>\pm</math> 39 || 1858
 +
|-
 +
| 5|| 1354,1419 ,1310 , 1397, 1327|| 1646
 +
|-
 +
| 6|| 1256, 1286 , 1291,1350, 1210<math> \pm</math> 37 || 1541
 +
|-
 +
| 7|| <math> \pm</math> 37 || 1541
 +
|-
 +
| 10|| 989,1024 , 1061, 1002, 1103 || 1216
 +
|-
 +
|}
  
  
TH1F *T00N=new TH1F("T00N","T00N",100,-1000.5,-0.5)
 
  
Electrons->Draw("evt.EoutPosZ>>T00N","evt.DepE/10.088/5000")
+
Electrons and Positrons after 2mm of LBE:
  
 +
Electrons:
  
 +
[[File:e01.png| 200 px]][[File:e02.png| 200 px]]
  
To convert From Mev/ e- to kW/cm^2 assuming a current of 1mA (10^-3 C/s) you 
+
Positrons:
 
 
<math>\left( \frac{\mbox{MeV}}{\mbox{cm}^2 \mbox{e}^-}\right) \times \left( \frac{ \mbox{e}^-}{1.6 \times 10^{-19}\mbox{C}}  \right ) \times \left( \frac{1 \times 10^{-3} \mbox{C}}{\mbox{s}} \right )  \times \left( \frac{1.6 \times 10^{-13}\mbox{W} \cdot \mbox{ s}}{\mbox{MeV} }\right )</math>
 
 
 
<math>\left( \frac{\mbox{keV}}{\mbox{cm}^2 \mbox{e}^-}\right) = \left( \frac{\mbox{W} }{\mbox{cm}^2 } \right )</math>
 
 
 
 
 
 
 
 
{| border="1"
 
| [[File:BeamPipeDepEmev-vs-B.png |200px]] || [[File:BeamPipeDepPower-vs-B.png |200px]]|| [[File:BeamPipeDepPower-vs-lowB.png |200px]] 
 
|+ Energy deposited (MeV) along a 1 m long beam pipe of stainless steel 1.65 mm thick.
 
|}
 
  
With SS windows
+
[[File:p01.png| 200 px]][[File:p02.png| 200 px]]
Positrons->Draw("sqrt(evt.BeamPosPosX*evt.BeamPosPosX+evt.BeamPosPosY*evt.BeamPosPosY)","evt.BeamPosMomZ>0 && evt.BeamPosPosZ>-500 && sqrt(evt.BeamPosPosX*evt.BeamPosPosX+evt.BeamPosPosY*evt.BeamPosPosY)<97.4/2");
 

Revision as of 20:50, 12 April 2016

2mm thick PbBi, 10 MeV, point source G4beamline pencil beam 10 cm radius

beam ellipse particle=e- nEvents=1000000 beamZ=0.0 beamX=0. beamY=0. \
        sigmaX=10.0 sigmaY=10.0 sigmaXp=0.000 sigmaYp=0.000 \
      meanMomentum=10. sigmaE=0. maxR=10.


PbBi Thickness (mm) #positrons/million electrons (G4Beamline) #positrons/million electrons (MCNPX)
1 1138,1154,1097,1159,1125 =1135[math]\pm[/math]25
1.5 1668,1701,1639, 1644, 1628=1656[math]\pm[/math]29
2 1937,1930,1851,1874,1945=1907[math]\pm[/math]42
3 1889,1821,1852,1809,1859=1846[math]\pm[/math]32
4 1726,1696,1673,1693,1681=1694[math]\pm[/math] 20
5 1566,1543,1546,1625,1566=1569[math]\pm[/math]33
6 1549, 1486,1564,1545,1452=1520[math]\pm[/math] 50
7 1462,1327, 1407,1489 ,1477=1432[math]\pm[/math] 67
8 1289, 1335,1280, 1271, 1280 = 1291[math]\pm[/math] 25
10 1141,1241, 1199, 1202, 1148 =1186[math]\pm[/math]42


Below is the result using minerve

PbBi Thickness (mm) #positrons/million electrons (G4Beamline) #positrons/million electrons (MCNPX)
1 981,946,985,1046,1017 1091
1.5 1494,1444 ,1447,1409 ,1486 1728
2 1686,1700,1610, 1682,1656[math]\pm[/math] 43 1984
3 1648,1573, 1524,1670, 1592[math]\pm[/math] 13 1986
4 1528,1538, 1438, 1468, 1577[math]\pm[/math] 39 1858
5 1354,1419 ,1310 , 1397, 1327 1646
6 1256, 1286 , 1291,1350, 1210[math] \pm[/math] 37 1541
7 [math] \pm[/math] 37 1541
10 989,1024 , 1061, 1002, 1103 1216


Electrons and Positrons after 2mm of LBE:

Electrons:

E01.pngE02.png

Positrons:

P01.pngP02.png