Difference between revisions of "Looking at effects of Solenoid on Phi Shifts"
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
<center>[[File:FinalTheta.jpg]]</center> | <center>[[File:FinalTheta.jpg]]</center> | ||
+ | <pre> | ||
+ | Px=evt.FnlMom[0]/1000; | ||
+ | Py=evt.FnlMom[1]/1000; | ||
+ | Pz=evt.FnlMom[2]/1000; | ||
+ | px=evt.MolMom[0]/1000; | ||
+ | py=evt.MolMom[1]/1000; | ||
+ | pz=evt.MolMom[2]/1000; | ||
+ | |||
+ | KE=evt.FnlKE/1000; | ||
+ | ke=evt.MolKE/1000; | ||
+ | </pre> | ||
=[[Solenoid_effect_in_ 2_GeV_and_up_range|Solenoid effect > 2GeV]]= | =[[Solenoid_effect_in_ 2_GeV_and_up_range|Solenoid effect > 2GeV]]= |
Revision as of 20:44, 5 April 2016
Using Moller Data to alter energy range
Using the Moller event file MollerScattering_NH3_4e8incident.dat, we can use the fact that GEMC will only create a particle based on the Moller electron. While the data for the scattered electron is passed within a LUND file, kinematically this electron doesn't leave the beam area, and thus never enters the detectors to be recreated.
Px=evt.FnlMom[0]/1000; Py=evt.FnlMom[1]/1000; Pz=evt.FnlMom[2]/1000; px=evt.MolMom[0]/1000; py=evt.MolMom[1]/1000; pz=evt.MolMom[2]/1000; KE=evt.FnlKE/1000; ke=evt.MolKE/1000;