Difference between revisions of "Old work"
Jump to navigation
Jump to search
(Created page with "===Moller Differential Cross Section=== Using the equation from [1] <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ e^4 }{8E^{*2}}\left \{\frac{1+cos^4(\frac{\theta^*}{2})}{sin…") |
|||
Line 42: | Line 42: | ||
We find that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx .5\times 10^{-3}mb=.5\mu b</math> | We find that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx .5\times 10^{-3}mb=.5\mu b</math> | ||
+ | |||
+ | ===CM to Lab Frame=== | ||
+ | We can substitute in for <math>\theta</math> | ||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin^4\theta^*}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin(\theta^*)sin(\theta^*)sin(\theta^*)sin(\theta^*)}</math></center> | ||
+ | |||
+ | |||
+ | Using, | ||
+ | <center><math>sin(\theta^*)=sin(\theta_{2}^*)=\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)</math></center> | ||
+ | |||
+ | |||
+ | {| class="wikitable" align="center" | ||
+ | | style="background: gray" | <math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\, \partial \Omega} = \frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\,\partial \Omega^*}\frac{p}{p^{*}}</math> | ||
+ | |} | ||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (3+cos^2\theta^*)^2}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Now, using the trigometric identity, | ||
+ | <center><math>sin^2 t+cos^2 t=1\Longrightarrow cos^2(\theta^*)=1-sin^2(\theta^*)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (3+1-sin^2(\theta^*))^2}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-sin(\theta^*)sin(\theta^*))^2}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right))^2}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right))^2}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | Substituting, | ||
+ | <center><math>p_{2}^*=\sqrt{E_{2}^{*2}-m^2}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 (\sqrt{E_{2}^{*2}-m^2})^4}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 (E_{2}^{*2}-m^2)^2}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Substituting in for m, E<sub>2</sub><sup>*,</sup>and E<sup>*</sup> | ||
+ | <math>\alpha^2=5.3279\times 10^{-5}</math> | ||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=(\frac{ 5.3279\times 10^{-5}( ((53.015MeV)^{2}-(.511MeV)^2)^2}{4\times (106.031MeV)^{2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega '_1}=\frac{9.357\times 10^9eV^2}{p_{2}^{'4}}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center> |
Revision as of 19:27, 9 March 2016
Moller Differential Cross Section
Using the equation from [1]
This can be simplified to the form
Plugging in the values expected for 2 scattering electrons:
Using unit analysis on the term outside the parantheses, we find that the differential cross section for an electron at this momentum should be around
Using the conversion of
We find that the differential cross section scale is
CM to Lab Frame
We can substitute in for
Using,
Now, using the trigometric identity,
Substituting,
Substituting in for m, E2*,and E*